» Articles » PMID: 37762246

Taxonomic Identification of the Arctic Strain Sp. Nov. and Global Transcriptomic Analysis in Response to Hydrogen Peroxide Stress

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2023 Sep 28
PMID 37762246
Authors
Affiliations
Soon will be listed here.
Abstract

Microorganisms living in polar regions rely on specialized mechanisms to adapt to extreme environments. The study of their stress adaptation mechanisms is a hot topic in international microbiology research. In this study, a bacterial strain (Arc9.136) isolated from Arctic marine sediments was selected to implement polyphasic taxonomic identification based on factors such as genetic characteristics, physiological and biochemical properties, and chemical composition. The results showed that strain Arc9.136 is classified to the genus , for which the name sp. nov. is proposed. The ozone hole over the Arctic leads to increased ultraviolet (UV-B) radiation, and low temperatures lead to increased dissolved content in seawater. These extreme environmental conditions result in oxidative stress, inducing a strong response in microorganisms. Based on the functional classification of significantly differentially expressed genes under 1 mM HO stress, we suspect that Arc9.136 may respond to oxidative stress through the following strategies: (1) efficient utilization of various carbon sources to improve carbohydrate transport and metabolism; (2) altering ion transport and metabolism by decreasing the uptake of divalent iron (to avoid the Fenton reaction) and increasing the utilization of trivalent iron (to maintain intracellular iron homeostasis); (3) increasing the level of cell replication, DNA repair, and defense functions, repairing DNA damage caused by HO; (4) and changing the composition of lipids in the cell membrane and reducing the sensitivity of lipid peroxidation. This study provides insights into the stress resistance mechanisms of microorganisms in extreme environments and highlights the potential for developing low-temperature active microbial resources.

References
1.
Janda J, Abbott S . 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol. 2007; 45(9):2761-4. PMC: 2045242. DOI: 10.1128/JCM.01228-07. View

2.
Lo Giudice A, Bruni V, Michaud L . Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms. J Basic Microbiol. 2007; 47(6):496-505. DOI: 10.1002/jobm.200700227. View

3.
Liang Q, Xu Z, Zhang J, Chen G, Du Z . Salegentibacter sediminis sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from coastal sediment. Int J Syst Evol Microbiol. 2018; 68(7):2375-2380. DOI: 10.1099/ijsem.0.002849. View

4.
Urzi C, Salamone P, Schumann P, Stackebrandt E . Marmoricola aurantiacus gen. nov., sp. nov., a coccoid member of the family Nocardioidaceae isolated from a marble statue. Int J Syst Evol Microbiol. 2000; 50 Pt 2:529-536. DOI: 10.1099/00207713-50-2-529. View

5.
Wan F, Feng X, Yin J, Gao H . Distinct HO-Scavenging System in : KatG and AhpC Act Together to Scavenge Endogenous Hydrogen Peroxide. Front Microbiol. 2021; 12:626874. PMC: 8139631. DOI: 10.3389/fmicb.2021.626874. View