6.
Pearce K, Sufrinko A, Lau B, Henry L, Collins M, Kontos A
. Near Point of Convergence After a Sport-Related Concussion: Measurement Reliability and Relationship to Neurocognitive Impairment and Symptoms. Am J Sports Med. 2015; 43(12):3055-61.
PMC: 5067104.
DOI: 10.1177/0363546515606430.
View
7.
Babikian T, Freier M, Tong K, Nickerson J, Wall C, Holshouser B
. Susceptibility weighted imaging: neuropsychologic outcome and pediatric head injury. Pediatr Neurol. 2005; 33(3):184-94.
DOI: 10.1016/j.pediatrneurol.2005.03.015.
View
8.
Verschuuren S, Poretti A, Buerki S, Lequin M, Huisman T
. Susceptibility-weighted imaging of the pediatric brain. AJR Am J Roentgenol. 2012; 198(5):W440-9.
DOI: 10.2214/AJR.11.8049.
View
9.
McCrea M, Broglio S, McAllister T, Gill J, Giza C, Huber D
. Association of Blood Biomarkers With Acute Sport-Related Concussion in Collegiate Athletes: Findings From the NCAA and Department of Defense CARE Consortium. JAMA Netw Open. 2020; 3(1):e1919771.
PMC: 6991302.
DOI: 10.1001/jamanetworkopen.2019.19771.
View
10.
Welch R, Ellis M, Lewis L, Ayaz S, Mika V, Millis S
. Modeling the Kinetics of Serum Glial Fibrillary Acidic Protein, Ubiquitin Carboxyl-Terminal Hydrolase-L1, and S100B Concentrations in Patients with Traumatic Brain Injury. J Neurotrauma. 2016; 34(11):1957-1971.
PMC: 6913786.
DOI: 10.1089/neu.2016.4772.
View
11.
Mofatteh M
. Neurosurgery and artificial intelligence. AIMS Neurosci. 2021; 8(4):477-495.
PMC: 8611194.
DOI: 10.3934/Neuroscience.2021025.
View
12.
Huang Y, Kuo Y, Tseng Y, Chen D, Chiu W, Chen C
. Susceptibility-weighted MRI in mild traumatic brain injury. Neurology. 2015; 84(6):580-5.
DOI: 10.1212/WNL.0000000000001237.
View
13.
Anderson H, Stuebing K
. Subjective versus objective accommodative amplitude: preschool to presbyopia. Optom Vis Sci. 2015; 91(11):1290-301.
PMC: 4300538.
DOI: 10.1097/OPX.0000000000000402.
View
14.
Akhand O, Galetta M, Cobbs L, Hasanaj L, Webb N, Drattell J
. The new Mobile Universal Lexicon Evaluation System (MULES): A test of rapid picture naming for concussion sized for the sidelines. J Neurol Sci. 2018; 387:199-204.
PMC: 6022286.
DOI: 10.1016/j.jns.2018.02.031.
View
15.
Hunfalvay M, Murray N, Mani R, Carrick F
. Smooth Pursuit Eye Movements as a Biomarker for Mild Concussion within 7-Days of Injury. Brain Inj. 2021; 35(14):1682-1689.
DOI: 10.1080/02699052.2021.2012825.
View
16.
Tong K, Ashwal S, Holshouser B, Shutter L, Herigault G, Haacke E
. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. Radiology. 2003; 227(2):332-9.
DOI: 10.1148/radiol.2272020176.
View
17.
Posti J, Takala R, Runtti H, Newcombe V, Outtrim J, Katila A
. The Levels of Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase-L1 During the First Week After a Traumatic Brain Injury: Correlations With Clinical and Imaging Findings. Neurosurgery. 2016; 79(3):456-64.
DOI: 10.1227/NEU.0000000000001226.
View
18.
Rizzo J, Hudson T, Martone J, Dai W, Ihionu O, Chaudhry Y
. How sandbag-able are concussion sideline assessments? A close look at eye movements to uncover strategies. Brain Inj. 2021; 35(4):426-435.
DOI: 10.1080/02699052.2021.1878554.
View
19.
Mucha A, Collins M, Elbin R, Furman J, Troutman-Enseki C, DeWolf R
. A Brief Vestibular/Ocular Motor Screening (VOMS) assessment to evaluate concussions: preliminary findings. Am J Sports Med. 2014; 42(10):2479-86.
PMC: 4209316.
DOI: 10.1177/0363546514543775.
View
20.
Kontos A, Deitrick J, Collins M, Mucha A
. Review of Vestibular and Oculomotor Screening and Concussion Rehabilitation. J Athl Train. 2017; 52(3):256-261.
PMC: 5384823.
DOI: 10.4085/1062-6050-51.11.05.
View