» Articles » PMID: 37759735

Extracellular Acetylated Histone 3.3 Induces Inflammation and Lung Tissue Damage

Overview
Journal Biomolecules
Publisher MDPI
Date 2023 Sep 28
PMID 37759735
Authors
Affiliations
Soon will be listed here.
Abstract

Extracellular histones, part of the protein group known as damage-associated molecular patterns (DAMPs), are released from damaged or dying cells and can instigate cellular toxicity. Within the context of chronic obstructive pulmonary disease (COPD), there is an observed abundance of extracellular histone H3.3, indicating potential pathogenic implications. Notably, histone H3.3 is often found hyperacetylated (AcH3.3) in the lungs of COPD patients. Despite these observations, the specific role of these acetylated histones in inducing pulmonary tissue damage in COPD remains unclear. To investigate AcH3.3's impact on lung tissue, we administered recombinant histones (rH2A, rH3.3, and rAcH3.3) or vehicle solution to mice via intratracheal instillation. After 48 h, we evaluated the lung toxicity damage and found that the rAcH3.3 treated animals exhibited more severe lung tissue damage compared to those treated with non-acetylated H3.3 and controls. The rAcH3.3 instillation resulted in significant histological changes, including alveolar wall rupture, epithelial cell damage, and immune cell infiltration. Micro-CT analysis confirmed macroscopic structural changes. The rAcH3.3 instillation also increased apoptotic activity (cleavage of caspase 3 and 9) and triggered acute systemic inflammatory marker activation (TNF-α, IL-6, MCP-3, or CXCL-1) in plasma, accompanied by leukocytosis and lymphocytosis. Confocal imaging analysis confirmed lymphocytic and monocytic/macrophage lung infiltration in response to H3.3 and AcH3.3 administration. Taken together, our findings implicate extracellular AcH3.3 in inducing cytotoxicity and acute inflammatory responses, suggesting its potential role in promoting COPD-related lung damage progression.

Citing Articles

Glucocorticoid-mediated acetylated regulation of glucocorticoid receptor and Histone3/Histone4 influence glucocorticoid heterogeneity in children patients with primary nephrotic syndrome.

Liang Y, Liang C, Cheng J, Peng Q, Zeng P, Guan F Ital J Pediatr. 2025; 51(1):69.

PMID: 40055727 PMC: 11887386. DOI: 10.1186/s13052-025-01914-y.

References
1.
Karki P, Birukov K, Birukova A . Extracellular histones in lung dysfunction: a new biomarker and therapeutic target?. Pulm Circ. 2020; 10(4):2045894020965357. PMC: 7675882. DOI: 10.1177/2045894020965357. View

2.
Shmueli M, Sheban D, Eisenberg-Lerner A, Merbl Y . Histone degradation by the proteasome regulates chromatin and cellular plasticity. FEBS J. 2021; 289(12):3304-3316. PMC: 9292675. DOI: 10.1111/febs.15903. View

3.
Ali S, Cunningham R, Amin M, Popoff S, Mohamed F, Barbe M . The extensor carpi ulnaris pseudolesion: evaluation with microCT, histology, and MRI. Skeletal Radiol. 2015; 44(12):1735-43. PMC: 4609633. DOI: 10.1007/s00256-015-2224-3. View

4.
Barnes P . Chronic obstructive pulmonary disease: a growing but neglected global epidemic. PLoS Med. 2007; 4(5):e112. PMC: 1865560. DOI: 10.1371/journal.pmed.0040112. View

5.
Kim V, Criner G . Chronic bronchitis and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012; 187(3):228-37. PMC: 4951627. DOI: 10.1164/rccm.201210-1843CI. View