6.
Yoo J, Kruhlak N, Landry C, Cross K, Sedykh A, Stavitskaya L
. Development of improved QSAR models for predicting the outcome of the in vivo micronucleus genetic toxicity assay. Regul Toxicol Pharmacol. 2020; 113:104620.
DOI: 10.1016/j.yrtph.2020.104620.
View
7.
Muller L, Mauthe R, Riley C, Andino M, Antonis D, Beels C
. A rationale for determining, testing, and controlling specific impurities in pharmaceuticals that possess potential for genotoxicity. Regul Toxicol Pharmacol. 2006; 44(3):198-211.
DOI: 10.1016/j.yrtph.2005.12.001.
View
8.
Fan D, Yang H, Li F, Sun L, Di P, Li W
. prediction of chemical genotoxicity using machine learning methods and structural alerts. Toxicol Res (Camb). 2018; 7(2):211-220.
PMC: 6062245.
DOI: 10.1039/c7tx00259a.
View
9.
Elder D, Snodin D
. Drug substances presented as sulfonic acid salts: overview of utility, safety and regulation. J Pharm Pharmacol. 2009; 61(3):269-78.
DOI: 10.1211/jpp/61.03.0001.
View
10.
Wu Z, Ramsundar B, Feinberg E, Gomes J, Geniesse C, Pappu A
. MoleculeNet: a benchmark for molecular machine learning. Chem Sci. 2018; 9(2):513-530.
PMC: 5868307.
DOI: 10.1039/c7sc02664a.
View
11.
Chilingaryan G, Tamoyan H, Tevosyan A, Babayan N, Hambardzumyan K, Navoyan Z
. BartSmiles: Generative Masked Language Models for Molecular Representations. J Chem Inf Model. 2024; 64(15):5832-5843.
DOI: 10.1021/acs.jcim.4c00512.
View
12.
Lee J, Yoon W, Kim S, Kim D, Kim S, So C
. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. 2019; 36(4):1234-1240.
PMC: 7703786.
DOI: 10.1093/bioinformatics/btz682.
View
13.
Morita T, Shigeta Y, Kawamura T, Fujita Y, Honda H, Honma M
. In silico prediction of chromosome damage: comparison of three (Q)SAR models. Mutagenesis. 2018; 34(1):91-100.
DOI: 10.1093/mutage/gey017.
View
14.
Baderna D, Gadaleta D, Lostaglio E, Selvestrel G, Raitano G, Golbamaki A
. New in silico models to predict in vitro micronucleus induction as marker of genotoxicity. J Hazard Mater. 2019; 385:121638.
DOI: 10.1016/j.jhazmat.2019.121638.
View
15.
Tweats D, Johnson G, Scandale I, Whitwell J, Evans D
. Genotoxicity of flubendazole and its metabolites in vitro and the impact of a new formulation on in vivo aneugenicity. Mutagenesis. 2015; 31(3):309-21.
PMC: 4840262.
DOI: 10.1093/mutage/gev070.
View
16.
Blagus R, Lusa L
. SMOTE for high-dimensional class-imbalanced data. BMC Bioinformatics. 2013; 14:106.
PMC: 3648438.
DOI: 10.1186/1471-2105-14-106.
View
17.
Mitchell J
. Machine learning methods in chemoinformatics. Wiley Interdiscip Rev Comput Mol Sci. 2014; 4(5):468-481.
PMC: 4180928.
DOI: 10.1002/wcms.1183.
View
18.
Canipa S, Cayley A, Drewe W, Williams R, Hamada S, Hirose A
. Using in vitro structural alerts for chromosome damage to predict in vivo activity and direct future testing. Mutagenesis. 2015; 31(1):17-25.
DOI: 10.1093/mutage/gev047.
View
19.
Coley C, Jin W, Rogers L, Jamison T, Jaakkola T, Green W
. A graph-convolutional neural network model for the prediction of chemical reactivity. Chem Sci. 2019; 10(2):370-377.
PMC: 6335848.
DOI: 10.1039/c8sc04228d.
View
20.
Corvi R, Madia F
. In vitro genotoxicity testing-Can the performance be enhanced?. Food Chem Toxicol. 2016; 106(Pt B):600-608.
DOI: 10.1016/j.fct.2016.08.024.
View