6.
El Aamri M, Mohammadi H, Amine A
. Paper-Based Colorimetric Detection of miRNA-21 Using Pre-Activated Nylon Membrane and Peroxidase-Mimetic Activity of Cysteamine-Capped Gold Nanoparticles. Biosensors (Basel). 2023; 13(1).
PMC: 9855695.
DOI: 10.3390/bios13010074.
View
7.
Dubois M, GILLES K, Hamilton J, Rebers P, Smith F
. A colorimetric method for the determination of sugars. Nature. 1951; 168(4265):167.
DOI: 10.1038/168167a0.
View
8.
Li M, Liu M, Ma C, Shi C
. Rapid DNA detection and one-step RNA detection catalyzed by Bst DNA polymerase and narrow-thermal-cycling. Analyst. 2020; 145(15):5118-5122.
DOI: 10.1039/d0an00975j.
View
9.
Yue F, Zhang J, Xu J, Niu T, Lu X, Liu M
. Effects of monosaccharide composition on quantitative analysis of total sugar content by phenol-sulfuric acid method. Front Nutr. 2022; 9:963318.
PMC: 9378961.
DOI: 10.3389/fnut.2022.963318.
View
10.
Untiveros K, da Silva E, de Abreu F, Silva-Junior E, Araujo-Junior J, Mendoca de Aquino T
. An electrochemical biosensor based on Hairpin-DNA modified gold electrode for detection of DNA damage by a hybrid cancer drug intercalation. Biosens Bioelectron. 2019; 133:160-168.
DOI: 10.1016/j.bios.2019.02.071.
View
11.
Radhakrishnan K, Kumar P
. Target-receptive structural switching of ssDNA as selective and sensitive biosensor for subsequent detection of toxic Pb and organophosphorus pesticide. Chemosphere. 2021; 287(Pt 2):132163.
DOI: 10.1016/j.chemosphere.2021.132163.
View
12.
Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S, Lee Y
. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal Biochem. 2005; 339(1):69-72.
DOI: 10.1016/j.ab.2004.12.001.
View
13.
Laurentin A, Edwards C
. A microtiter modification of the anthrone-sulfuric acid colorimetric assay for glucose-based carbohydrates. Anal Biochem. 2003; 315(1):143-5.
DOI: 10.1016/s0003-2697(02)00704-2.
View
14.
Lucarelli F, Palchetti I, Marrazza G, Mascini M
. Electrochemical DNA biosensor as a screening tool for the detection of toxicants in water and wastewater samples. Talanta. 2008; 56(5):949-57.
DOI: 10.1016/s0039-9140(01)00655-5.
View
15.
Lei Z, Alwan M, Alamir H, Alkaaby H, Farhan S, Awadh S
. Detection of abemaciclib, an anti-breast cancer agent, using a new electrochemical DNA biosensor. Front Chem. 2022; 10:980162.
PMC: 9635563.
DOI: 10.3389/fchem.2022.980162.
View
16.
Trinh K, Kadam U, Rampogu S, Cho Y, Yang K, Kang C
. Development of novel fluorescence-based and label-free noncanonical G4-quadruplex-like DNA biosensor for facile, specific, and ultrasensitive detection of fipronil. J Hazard Mater. 2021; 427:127939.
DOI: 10.1016/j.jhazmat.2021.127939.
View
17.
Liu P, Zhao K, Liu Z, Wang L, Ye S, Liang G
. Cas12a-based electrochemiluminescence biosensor for target amplification-free DNA detection. Biosens Bioelectron. 2021; 176:112954.
DOI: 10.1016/j.bios.2020.112954.
View
18.
Xu X, Daniel W, Wei W, Mirkin C
. Colorimetric Cu(2+) detection using DNA-modified gold-nanoparticle aggregates as probes and click chemistry. Small. 2010; 6(5):623-6.
PMC: 3517019.
DOI: 10.1002/smll.200901691.
View
19.
El Aamri M, Yammouri G, Mohammadi H, Amine A, Korri-Youssoufi H
. Electrochemical Biosensors for Detection of MicroRNA as a Cancer Biomarker: Pros and Cons. Biosensors (Basel). 2020; 10(11).
PMC: 7699780.
DOI: 10.3390/bios10110186.
View
20.
Qi H, Zhang C
. Electrogenerated Chemiluminescence Biosensing. Anal Chem. 2019; 92(1):524-534.
DOI: 10.1021/acs.analchem.9b03425.
View