» Articles » PMID: 37747295

NIR-activated Quercetin-based Nanogels Embedded with CuS Nanoclusters for the Treatment of Drug-resistant Biofilms and Accelerated Chronic Wound Healing

Overview
Journal Nanoscale Horiz
Specialty Biotechnology
Date 2023 Sep 25
PMID 37747295
Authors
Affiliations
Soon will be listed here.
Abstract

We have developed multifunctional nanogels with antimicrobial, antioxidant, and anti-inflammatory properties, facilitating rapid wound healing. To prepare the multifunctional nanogels, we utilized quercetin (Qu) and a mild carbonization process to form carbonized nanogels (CNGs). These CNGs possess excellent antioxidative and bacterial targeting properties. Subsequently, we utilized the Qu-CNGs as templates to prepare nanogels incorporating copper sulfide (CuS) nanoclusters, further enhancing their functionality. Notably, the CuS/Qu-CNGs nanocomposites demonstrated an exceptional minimum inhibitory concentration against tested bacteria, approximately 125-fold lower than monomeric Qu or Qu-CNGs. This enhanced antimicrobial effect was achieved by leveraging near-infrared II (NIR-II) light irradiation. Additionally, the CuS/Qu-CNGs exhibited efficient penetration into the extracellular biofilm matrix, eradicating methicillin-resistant -associated biofilms in diabetic mice wounds. Furthermore, the nanocomposites were found to suppress proinflammatory cytokines, such as IL-1β, at the wound sites while regulating the expression of anti-inflammatory factors, including IL-10 and TGF-β1, throughout the recovery process. The presence of CuS/Qu-CNGs promoted angiogenesis, epithelialization, and collagen synthesis, thereby accelerating wound healing. Our developed CuS/Qu-CNGs nanocomposites have great potential in addressing the challenges associated with delayed wound healing caused by microbial pathogenesis.

Citing Articles

Advancing diabetic wound care: The role of copper-containing hydrogels.

Astaneh M, Fereydouni N Heliyon. 2024; 10(20):e38481.

PMID: 39640763 PMC: 11619988. DOI: 10.1016/j.heliyon.2024.e38481.


Natural compounds in the fight against biofilms: a review of antibiofilm strategies.

Kashi M, Noei M, Chegini Z, Shariati A Front Pharmacol. 2024; 15:1491363.

PMID: 39635434 PMC: 11615405. DOI: 10.3389/fphar.2024.1491363.


Nanogel-based composites for bacterial antibiofilm activity: advances, challenges, and prospects.

Ali A, Al Bostami R, Al-Othman A RSC Adv. 2024; 14(15):10546-10559.

PMID: 38567332 PMC: 10985586. DOI: 10.1039/d4ra00410h.