» Articles » PMID: 37723165

Microcavity Phonoritons - a Coherent Optical-to-microwave Interface

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Sep 18
PMID 37723165
Authors
Affiliations
Soon will be listed here.
Abstract

Optomechanical systems provide a pathway for the bidirectional optical-to-microwave interconversion in (quantum) networks. These systems can be implemented using hybrid platforms, which efficiently couple optical photons and microwaves via intermediate agents, e.g. phonons. Semiconductor exciton-polariton microcavities operating in the strong light-matter coupling regime offer enhanced coupling of near-infrared photons to GHz phonons via excitons. Furthermore, a new coherent phonon-exciton-photon quasiparticle termed phonoriton, has been theoretically predicted to emerge in microcavities, but so far has eluded observation. Here, we experimentally demonstrate phonoritons, when two exciton-polariton condensates confined in a μm-sized trap within a phonon-photon microcavity are strongly coupled to a confined phonon which is resonant with the energy separation between the condensates. We realize control of phonoritons by piezoelectrically generated phonons and resonant photons. Our findings are corroborated by quantitative models. Thus, we establish zero-dimensional phonoritons as a coherent microwave-to-optical interface.

Citing Articles

Wireless microwave-to-optical conversion via programmable metasurface without DC supply.

Zhang X, Sun Y, Zhu B, Tian H, Wang B, Zhang Z Nat Commun. 2025; 16(1):528.

PMID: 39788993 PMC: 11718073. DOI: 10.1038/s41467-025-55940-9.


Acceleration-induced spectral beats in strongly driven harmonic oscillators.

Kuznetsov A, Biermann K, Santos P Nat Commun. 2024; 15(1):5343.

PMID: 38961065 PMC: 11222502. DOI: 10.1038/s41467-024-49610-5.


Monolithic Polarizing Circular Dielectric Gratings on Bulk Substrates for Improved Photon Collection from InAs Quantum Dots.

DeCrescent R, Wang Z, Imany P, Woo Nam S, Mirin R, Silverman K Phys Rev Appl. 2024; 20(6).

PMID: 38618629 PMC: 11010648. DOI: 10.1103/PhysRevApplied.20.064013.

References
1.
de Lima Jr M, Hey R, Santos P, Cantarero A . Phonon-induced optical superlattice. Phys Rev Lett. 2005; 94(12):126805. DOI: 10.1103/PhysRevLett.94.126805. View

2.
Bagheri M, Poot M, Li M, Pernice W, Tang H . Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. Nat Nanotechnol. 2011; 6(11):726-32. DOI: 10.1038/nnano.2011.180. View

3.
Trigo M, Bruchhausen A, Fainstein A, Jusserand B, Thierry-Mieg V . Confinement of acoustical vibrations in a semiconductor planar phonon cavity. Phys Rev Lett. 2002; 89(22):227402. DOI: 10.1103/PhysRevLett.89.227402. View

4.
Metcalfe M, Carr S, Muller A, Solomon G, Lawall J . Resolved sideband emission of InAs/GaAs quantum dots strained by surface acoustic waves. Phys Rev Lett. 2010; 105(3):037401. PMC: 10198564. DOI: 10.1103/PhysRevLett.105.037401. View

5.
Teufel J, Li D, Allman M, Cicak K, Sirois A, Whittaker J . Circuit cavity electromechanics in the strong-coupling regime. Nature. 2011; 471(7337):204-8. DOI: 10.1038/nature09898. View