6.
Holmer A, Tetschke F, Marotz J, Malberg H, Markgraf W, Thiele C
. Oxygenation and perfusion monitoring with a hyperspectral camera system for chemical based tissue analysis of skin and organs. Physiol Meas. 2016; 37(11):2064-2078.
DOI: 10.1088/0967-3334/37/11/2064.
View
7.
Andersen H, Poulsen J, Uchida Y, Nikbakht A, Arendt-Nielsen L, Gazerani P
. Cold and L-menthol-induced sensitization in healthy volunteers--a cold hypersensitivity analogue to the heat/capsaicin model. Pain. 2015; 156(5):880-889.
DOI: 10.1097/j.pain.0000000000000123.
View
8.
Boas D, Dunn A
. Laser speckle contrast imaging in biomedical optics. J Biomed Opt. 2010; 15(1):011109.
PMC: 2816990.
DOI: 10.1117/1.3285504.
View
9.
Khaksari K, Kirkpatrick S
. Combined effects of scattering and absorption on laser speckle contrast imaging. J Biomed Opt. 2016; 21(7):76002.
DOI: 10.1117/1.JBO.21.7.076002.
View
10.
Stewart C, Frank R, Forrester K, Tulip J, Lindsay R, Bray R
. A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging. Burns. 2005; 31(6):744-52.
DOI: 10.1016/j.burns.2005.04.004.
View
11.
Mirdell R, Iredahl F, Sjoberg F, Farnebo S, Tesselaar E
. Microvascular blood flow in scalds in children and its relation to duration of wound healing: A study using laser speckle contrast imaging. Burns. 2016; 42(3):648-54.
DOI: 10.1016/j.burns.2015.12.005.
View
12.
Casavola C, Paunescu L, Fantini S, Gratton E
. Blood flow and oxygen consumption with near-infrared spectroscopy and venous occlusion: spatial maps and the effect of time and pressure of inflation. J Biomed Opt. 2000; 5(3):269-76.
DOI: 10.1117/1.429995.
View
13.
Chen X, Lin W, Wang C, Chen S, Sheng J, Zeng B
. real-time imaging of cutaneous hemoglobin concentration, oxygen saturation, scattering properties, melanin content, and epidermal thickness with visible spatially modulated light. Biomed Opt Express. 2018; 8(12):5468-5482.
PMC: 5745096.
DOI: 10.1364/BOE.8.005468.
View
14.
Dupont J, Orlik X, Ghabbach A, Zerrad M, Soriano G, Amra C
. Polarization analysis of speckle field below its transverse correlation width : application to surface and bulk scattering. Opt Express. 2014; 22(20):24133-41.
DOI: 10.1364/OE.22.024133.
View
15.
van Manen L, Birkhoff W, Eggermont J, Hoveling R, Nicklin P, Burggraaf J
. Detection of cutaneous oxygen saturation using a novel snapshot hyperspectral camera: a feasibility study. Quant Imaging Med Surg. 2021; 11(9):3966-3977.
PMC: 8339658.
DOI: 10.21037/qims-21-46.
View
16.
Dragojevic T, Bronzi D, Varma H, Valdes C, Castellvi C, Villa F
. High-speed multi-exposure laser speckle contrast imaging with a single-photon counting camera. Biomed Opt Express. 2015; 6(8):2865-76.
PMC: 4541515.
DOI: 10.1364/BOE.6.002865.
View
17.
Basak K, Dey G, Mahadevappa M, Mandal M, Sheet D, Dutta P
. Learning of speckle statistics for in vivo and noninvasive characterization of cutaneous wound regions using laser speckle contrast imaging. Microvasc Res. 2016; 107:6-16.
DOI: 10.1016/j.mvr.2016.04.008.
View
18.
Parthasarathy A, Tom W, Gopal A, Zhang X, Dunn A
. Robust flow measurement with multi-exposure speckle imaging. Opt Express. 2008; 16(3):1975-89.
DOI: 10.1364/oe.16.001975.
View
19.
Ruth B, Schmand J, Abendroth D
. Noncontact determination of skin blood flow using the laser speckle method: application to patients with peripheral arterial occlusive disease (PAOD) and to type-I diabetics. Lasers Surg Med. 1993; 13(2):179-88.
DOI: 10.1002/lsm.1900130205.
View
20.
Zakharov P, Volker A, Buck A, Weber B, Scheffold F
. Quantitative modeling of laser speckle imaging. Opt Lett. 2006; 31(23):3465-7.
DOI: 10.1364/ol.31.003465.
View