» Articles » PMID: 37719785

Computational 3D Microscopy with Optical Coherence Refraction Tomography

Overview
Journal Optica
Date 2023 Sep 18
PMID 37719785
Authors
Affiliations
Soon will be listed here.
Abstract

Optical coherence tomography (OCT) has seen widespread success as an in vivo clinical diagnostic 3D imaging modality, impacting areas including ophthalmology, cardiology, and gastroenterology. Despite its many advantages, such as high sensitivity, speed, and depth penetration, OCT suffers from several shortcomings that ultimately limit its utility as a 3D microscopy tool, such as its pervasive coherent speckle noise and poor lateral resolution required to maintain millimeter-scale imaging depths. Here, we present 3D optical coherence refraction tomography (OCRT), a computational extension of OCT which synthesizes an incoherent contrast mechanism by combining multiple OCT volumes, acquired across two rotation axes, to form a resolution-enhanced, speckle-reduced, refraction-corrected 3D reconstruction. Our label-free computational 3D microscope features a novel optical design incorporating a parabolic mirror to enable the capture of 5D plenoptic datasets, consisting of millimetric 3D fields of view over up to ±75° without moving the sample. We demonstrate that 3D OCRT reveals 3D features unobserved by conventional OCT in fruit fly, zebrafish, and mouse samples.

Citing Articles

Optical coherence tomography (OCT) and OCT angiography: Technological development and applications in brain science.

Yang L, Chen P, Wen X, Zhao Q Theranostics. 2025; 15(1):122-140.

PMID: 39744229 PMC: 11667229. DOI: 10.7150/thno.97192.


Computational approach for correcting defocus and suppressing speckle noise in line-field optical coherence tomography images.

Abbasi N, Chen K, Wong A, Bizheva K Biomed Opt Express. 2024; 15(9):5491-5504.

PMID: 39296416 PMC: 11407272. DOI: 10.1364/BOE.530569.


Ultrasound-induced reorientation for multi-angle optical coherence tomography.

Kvale Lovmo M, Deng S, Moser S, Leitgeb R, Drexler W, Ritsch-Marte M Nat Commun. 2024; 15(1):2391.

PMID: 38493195 PMC: 10944478. DOI: 10.1038/s41467-024-46506-2.


Parallelized computational 3D video microscopy of freely moving organisms at multiple gigapixels per second.

Zhou K, Harfouche M, Cooke C, Park J, Konda P, Kreiss L Nat Photonics. 2023; 17(5):442-450.

PMID: 37808252 PMC: 10552607. DOI: 10.1038/s41566-023-01171-7.


Correcting spatial-spectral crosstalk and chromatic aberrations in broadband line-scan spectral-domain OCT images.

Han L, Bizheva K Biomed Opt Express. 2023; 14(7):3344-3361.

PMID: 37497512 PMC: 10368066. DOI: 10.1364/BOE.488881.


References
1.
Ledwig P, Robles F . Quantitative 3D refractive index tomography of opaque samples in epi-mode. Optica. 2021; 8(1):6-14. PMC: 8341081. DOI: 10.1364/optica.410135. View

2.
Izatt J, Hee M, Owen G, Swanson E, Fujimoto J . Optical coherence microscopy in scattering media. Opt Lett. 2009; 19(8):590-2. DOI: 10.1364/ol.19.000590. View

3.
Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher A . Submicrometer axial resolution optical coherence tomography. Opt Lett. 2007; 27(20):1800-2. DOI: 10.1364/ol.27.001800. View

4.
Zheng G, Horstmeyer R, Yang C . Wide-field, high-resolution Fourier ptychographic microscopy. Nat Photonics. 2014; 7(9):739-745. PMC: 4169052. DOI: 10.1038/nphoton.2013.187. View

5.
Ding Z, Ren H, Zhao Y, Nelson J, Chen Z . High-resolution optical coherence tomography over a large depth range with an axicon lens. Opt Lett. 2007; 27(4):243-5. DOI: 10.1364/ol.27.000243. View