» Articles » PMID: 37717076

Control of Arbuscule Development by a Transcriptional Negative Feedback Loop in Medicago

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Sep 16
PMID 37717076
Authors
Affiliations
Soon will be listed here.
Abstract

Most terrestrial plants establish a symbiosis with arbuscular mycorrhizal fungi (AMF), which provide them with lipids and sugars in exchange for phosphorus and nitrogen. Nutrient exchange must be dynamically controlled to maintain a mutually beneficial relationship between the two symbiotic partners. The WRI5a and its homologues play a conserved role in lipid supply to AMF. Here, we demonstrate that the AP2/ERF transcription factor MtERM1 binds directly to AW-box and AW-box-like cis-elements in the promoters of MtSTR2 and MtSTR, which are required for host lipid efflux and arbuscule development. The EAR domain-containing transcription factor MtERF12 is also directly activated by MtERM1/MtWRI5a to negatively regulate arbuscule development, and the TOPLESS co-repressor is further recruited by MtERF12 through EAR motif to oppose MtERM1/MtWRI5a function, thereby suppressing arbuscule development. We therefore reveal an ERM1/WRI5a-ERF12-TOPLESS negative feedback loop that enables plants to flexibly control nutrient exchange and ensure a mutually beneficial symbiosis.

Citing Articles

OsNLP3 and OsPHR2 orchestrate direct and mycorrhizal pathways for nitrate uptake by regulating NAR2.1-NRT2s complexes in rice.

Wang S, Ye H, Yang C, Zhang Y, Pu J, Ren Y Proc Natl Acad Sci U S A. 2025; 122(8):e2416345122.

PMID: 39964711 PMC: 11874573. DOI: 10.1073/pnas.2416345122.


Fatty Acid ABCG Transporter Mediates Resistance to and in Cotton.

Cheng G, Li X, Fernando W, Bibi S, Liang C, Bi Y Plants (Basel). 2025; 14(3).

PMID: 39943030 PMC: 11820032. DOI: 10.3390/plants14030465.


Unravelling the Molecular Dialogue of Beneficial Microbe-Plant Interactions.

Srivastava A, Singh R, Pandey G, Mukherjee P, Foyer C Plant Cell Environ. 2024; 48(4):2534-2548.

PMID: 39497504 PMC: 11893932. DOI: 10.1111/pce.15245.


Sugars, Lipids and More: New Insights Into Plant Carbon Sources During Plant-Microbe Interactions.

Zhang Q, Wang Z, Gao R, Jiang Y Plant Cell Environ. 2024; 48(2):1656-1673.

PMID: 39465686 PMC: 11695786. DOI: 10.1111/pce.15242.


Contribution of mycorrhizal symbiosis and root strategy to red clover aboveground biomass under nitrogen addition and phosphorus distribution.

Zhang H, Xiao Y Mycorrhiza. 2024; 34(5-6):489-502.

PMID: 39387919 DOI: 10.1007/s00572-024-01164-6.


References
1.
Fujimoto S, Ohta M, Usui A, Shinshi H, Ohme-Takagi M . Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell. 2000; 12(3):393-404. PMC: 139839. DOI: 10.1105/tpc.12.3.393. View

2.
Heck C, Kuhn H, Heidt S, Walter S, Rieger N, Requena N . Symbiotic Fungi Control Plant Root Cortex Development through the Novel GRAS Transcription Factor MIG1. Curr Biol. 2016; 26(20):2770-2778. DOI: 10.1016/j.cub.2016.07.059. View

3.
An J, Zeng T, Ji C, de Graaf S, Zheng Z, Xiao T . A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis. New Phytol. 2019; 224(1):396-408. DOI: 10.1111/nph.15975. View

4.
Kagale S, Links M, Rozwadowski K . Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis. Plant Physiol. 2010; 152(3):1109-34. PMC: 2832246. DOI: 10.1104/pp.109.151704. View

5.
Oldroyd G, Leyser O . A plant's diet, surviving in a variable nutrient environment. Science. 2020; 368(6486). DOI: 10.1126/science.aba0196. View