» Articles » PMID: 37713495

Misoriented High-entropy Iridium Ruthenium Oxide for Acidic Water Splitting

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2023 Sep 15
PMID 37713495
Authors
Affiliations
Soon will be listed here.
Abstract

Designing an efficient catalyst for acidic oxygen evolution reaction (OER) is of critical importance in manipulating proton exchange membrane water electrolyzer (PEMWE) for hydrogen production. Here, we report a fast, nonequilibrium strategy to synthesize quinary high-entropy ruthenium iridium-based oxide (M-RuIrFeCoNiO) with abundant grain boundaries (GB), which exhibits a low overpotential of 189 millivolts at 10 milliamperes per square centimeter for OER in 0.5 M HSO. Microstructural analyses, density functional calculations, and isotope-labeled differential electrochemical mass spectroscopy measurements collectively reveal that the integration of foreign metal elements and GB is responsible for the enhancement of activity and stability of RuO toward OER. A PEMWE using M-RuIrFeCoNiO catalyst can steadily operate at a large current density of 1 ampere per square centimeter for over 500 hours. This work demonstrates a pathway to design high-performance OER electrocatalysts by integrating the advantages of various components and GB, which breaks the limits of thermodynamic solubility for different metal elements.

Citing Articles

Dual Doping in Precious Metal Oxides: Accelerating Acidic Oxygen Evolution Reaction.

Ma G, Wang F, Jin R, Guo B, Huo H, Dai Y Int J Mol Sci. 2025; 26(4).

PMID: 40004048 PMC: 11855536. DOI: 10.3390/ijms26041582.


Activity-Stability Relationships in Oxygen Evolution Reaction.

Park W, Chung D ACS Mater Au. 2025; 5(1):1-10.

PMID: 39802143 PMC: 11718537. DOI: 10.1021/acsmaterialsau.4c00086.


Tackling activity-stability paradox of reconstructed NiIrO electrocatalysts by bridged W-O moiety.

Abdullah M, Fang Y, Wu X, Hu M, Shao J, Tao Y Nat Commun. 2024; 15(1):10587.

PMID: 39632899 PMC: 11618364. DOI: 10.1038/s41467-024-54987-4.


Atomically engineered interfaces inducing bridging oxygen-mediated deprotonation for enhanced oxygen evolution in acidic conditions.

Wu H, Chang J, Yu J, Wang S, Hu Z, Waterhouse G Nat Commun. 2024; 15(1):10315.

PMID: 39609455 PMC: 11605066. DOI: 10.1038/s41467-024-54798-7.


Entropy Engineering of 2D Materials.

Mei H, Zhang Y, Zhang P, Ricciardulli A, Samori P, Yang S Adv Sci (Weinh). 2024; 11(46):e2409404.

PMID: 39443829 PMC: 11633479. DOI: 10.1002/advs.202409404.


References
1.
Wu Z, Liu C, Guo L, Hu R, Abbas M, Hu T . Structural characterization of nickel oxide nanowires by X-ray absorption near-edge structure spectroscopy. J Phys Chem B. 2006; 109(7):2512-5. DOI: 10.1021/jp0466183. View

2.
Wu X, Zhang H, Zuo S, Dong J, Li Y, Zhang J . Engineering the Coordination Sphere of Isolated Active Sites to Explore the Intrinsic Activity in Single-Atom Catalysts. Nanomicro Lett. 2021; 13(1):136. PMC: 8184907. DOI: 10.1007/s40820-021-00668-6. View

3.
Hao S, Sheng H, Liu M, Huang J, Zheng G, Zhang F . Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers. Nat Nanotechnol. 2021; 16(12):1371-1377. DOI: 10.1038/s41565-021-00986-1. View

4.
Zhang L, Jang H, Liu H, Kim M, Yang D, Liu S . Sodium-Decorated Amorphous/Crystalline RuO with Rich Oxygen Vacancies: A Robust pH-Universal Oxygen Evolution Electrocatalyst. Angew Chem Int Ed Engl. 2021; 60(34):18821-18829. DOI: 10.1002/anie.202106631. View

5.
Reier T, Pawolek Z, Cherevko S, Bruns M, Jones T, Teschner D . Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir-Ni Oxide Catalysts for Electrochemical Water Splitting (OER). J Am Chem Soc. 2015; 137(40):13031-40. DOI: 10.1021/jacs.5b07788. View