» Articles » PMID: 37704616

Surface-immobilized Cross-linked Cationic Polyelectrolyte Enables CO Reduction with Metal Cation-free Acidic Electrolyte

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Sep 13
PMID 37704616
Authors
Affiliations
Soon will be listed here.
Abstract

Electrochemical CO reduction in acidic electrolytes is a promising strategy to achieve high utilization efficiency of CO. Although alkali cations in acidic electrolytes play a vital role in suppressing hydrogen evolution and promoting CO reduction, they also cause precipitation of bicarbonate on the gas diffusion electrode (GDE), flooding of electrolyte through the GDE, and drift of the electrolyte pH. In this work, we realize the electroreduction of CO in a metal cation-free acidic electrolyte by covering the catalyst with cross-linked poly-diallyldimethylammonium chloride. This polyelectrolyte provides a high density of cationic sites immobilized on the surface of the catalyst, which suppresses the mass transport of H and modulates the interfacial field strength. By adopting this strategy, the Faradaic efficiency (FE) of CO reaches 95 ± 3% with the Ag catalyst and the FE of formic acid reaches 76 ± 3% with the In catalyst in a 1.0 pH electrolyte in a flow cell. More importantly, with the metal cation-free acidic electrolyte the amount of electrolyte flooding through the GDE is decreased to 2.5 ± 0.6% of that with alkali cation-containing acidic electrolyte, and the FE of CO maintains above 80% over 36 h of operation at -200 mA·cm.

Citing Articles

Polymeric ionic liquid promotes acidic electrocatalytic CO conversion to multicarbon products with ampere level current on Cu.

Tan Z, Zhang J, Yang Y, Zhong J, Zhao Y, Teng Y Nat Commun. 2025; 16(1):1843.

PMID: 39984449 PMC: 11845769. DOI: 10.1038/s41467-025-57095-z.


Tip carbon encapsulation customizes cationic enrichment and valence stabilization for low K acidic CO electroreduction.

Wang Z, Liu D, Xia C, Shi X, Zhou Y, Liu Q Nat Commun. 2025; 16(1):1754.

PMID: 39971966 PMC: 11839987. DOI: 10.1038/s41467-025-56977-6.


The Role of Surfactant in Electrocatalytic Carbon Dioxide Reduction in the Absence of Metal Cations.

Jang H, Gardner A, Walters L, Neale A, Hardwick L, Cowan A ACS Electrochem. 2025; 1(1):20-24.

PMID: 39878147 PMC: 11728718. DOI: 10.1021/acselectrochem.4c00040.


Carbon Flow in Acidic CO Electroreduction.

Zhou X, Bai Y, Cao B, Yang L, Li F, Qin H Adv Sci (Weinh). 2025; 12(10):e2410679.

PMID: 39836608 PMC: 11905065. DOI: 10.1002/advs.202410679.


Tailoring Borate Mediator Species Enables Industrial CO Production with Improved Overall Energy Efficiency by Sustainable Molten Salt CO Electrolysis.

Li X, Deng B, Du K, Li W, Chen D, Qu X Adv Sci (Weinh). 2024; 12(4):e2406457.

PMID: 39630944 PMC: 11775544. DOI: 10.1002/advs.202406457.


References
1.
Nie W, Heim G, Watkins N, Agapie T, Peters J . Organic Additive-derived Films on Cu Electrodes Promote Electrochemical CO Reduction to C Products Under Strongly Acidic Conditions. Angew Chem Int Ed Engl. 2023; 62(12):e202216102. DOI: 10.1002/anie.202216102. View

2.
Wuttig A, Yaguchi M, Motobayashi K, Osawa M, Surendranath Y . Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Proc Natl Acad Sci U S A. 2016; 113(32):E4585-93. PMC: 4987813. DOI: 10.1073/pnas.1602984113. View

3.
Rabinowitz J, Kanan M . The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat Commun. 2020; 11(1):5231. PMC: 7567821. DOI: 10.1038/s41467-020-19135-8. View

4.
Ma M, Kim S, Chorkendorff I, Seger B . Role of ion-selective membranes in the carbon balance for CO electroreduction gas diffusion electrode reactor designs. Chem Sci. 2021; 11(33):8854-8861. PMC: 8163407. DOI: 10.1039/d0sc03047c. View

5.
Seh Z, Kibsgaard J, Dickens C, Chorkendorff I, Norskov J, Jaramillo T . Combining theory and experiment in electrocatalysis: Insights into materials design. Science. 2017; 355(6321). DOI: 10.1126/science.aad4998. View