6.
Horton J, Janoshazi A, Nadalutti C, Zhao M, Stefanick D, Wilson S
. Monitoring DNA polymerase β mitochondrial localization and dynamics. DNA Repair (Amst). 2022; 116:103357.
PMC: 9253048.
DOI: 10.1016/j.dnarep.2022.103357.
View
7.
Prasad R, Caglayan M, Dai D, Nadalutti C, Zhao M, Gassman N
. DNA polymerase β: A missing link of the base excision repair machinery in mammalian mitochondria. DNA Repair (Amst). 2017; 60:77-88.
PMC: 5919216.
DOI: 10.1016/j.dnarep.2017.10.011.
View
8.
Prakash A, Doublie S
. Base Excision Repair in the Mitochondria. J Cell Biochem. 2015; 116(8):1490-9.
PMC: 4546830.
DOI: 10.1002/jcb.25103.
View
9.
Fontana G, Gahlon H
. Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucleic Acids Res. 2020; 48(20):11244-11258.
PMC: 7672454.
DOI: 10.1093/nar/gkaa804.
View
10.
Kakimoto P, Kowaltowski A
. Effects of high fat diets on rodent liver bioenergetics and oxidative imbalance. Redox Biol. 2016; 8:216-25.
PMC: 4753394.
DOI: 10.1016/j.redox.2016.01.009.
View
11.
Legrand-Poels S, Esser N, Lhomme L, Scheen A, Paquot N, Piette J
. Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem Pharmacol. 2014; 92(1):131-41.
DOI: 10.1016/j.bcp.2014.08.013.
View
12.
Staiger H, Staiger K, Stefan N, Wahl H, Machicao F, Kellerer M
. Palmitate-induced interleukin-6 expression in human coronary artery endothelial cells. Diabetes. 2004; 53(12):3209-16.
DOI: 10.2337/diabetes.53.12.3209.
View
13.
Hirata Y, Takahashi M, Kudoh Y, Kano K, Kawana H, Makide K
. -Fatty acids promote proinflammatory signaling and cell death by stimulating the apoptosis signal-regulating kinase 1 (ASK1)-p38 pathway. J Biol Chem. 2017; 292(20):8174-8185.
PMC: 5437226.
DOI: 10.1074/jbc.M116.771519.
View
14.
Bassett C, McCullough R, Edel A, Maddaford T, Dibrov E, Blackwood D
. Trans-fatty acids in the diet stimulate atherosclerosis. Metabolism. 2009; 58(12):1802-8.
DOI: 10.1016/j.metabol.2009.06.010.
View
15.
Caviglia J, Gayet C, Ota T, Hernandez-Ono A, Conlon D, Jiang H
. Different fatty acids inhibit apoB100 secretion by different pathways: unique roles for ER stress, ceramide, and autophagy. J Lipid Res. 2011; 52(9):1636-51.
PMC: 3151684.
DOI: 10.1194/jlr.M016931.
View
16.
Palomer X, Pizarro-Delgado J, Barroso E, Vazquez-Carrera M
. Palmitic and Oleic Acid: The Yin and Yang of Fatty Acids in Type 2 Diabetes Mellitus. Trends Endocrinol Metab. 2018; 29(3):178-190.
DOI: 10.1016/j.tem.2017.11.009.
View
17.
Li S, Zhou T, Li C, Dai Z, Che D, Yao Y
. High metastaticgastric and breast cancer cells consume oleic acid in an AMPK dependent manner. PLoS One. 2014; 9(5):e97330.
PMC: 4019637.
DOI: 10.1371/journal.pone.0097330.
View
18.
Seo J, Do-Won Jeong , Park J, Lee K, Fukuda J, Chun Y
. Fatty-acid-induced FABP5/HIF-1 reprograms lipid metabolism and enhances the proliferation of liver cancer cells. Commun Biol. 2020; 3(1):638.
PMC: 7599230.
DOI: 10.1038/s42003-020-01367-5.
View
19.
Szanto M, Gupte R, Kraus W, Pacher P, Bai P
. PARPs in lipid metabolism and related diseases. Prog Lipid Res. 2021; 84:101117.
DOI: 10.1016/j.plipres.2021.101117.
View
20.
Pan J, Keffer J, Emami A, Ma X, Lan R, Goldman R
. Acrolein-derived DNA adduct formation in human colon cancer cells: its role in apoptosis induction by docosahexaenoic acid. Chem Res Toxicol. 2009; 22(5):798-806.
PMC: 2683896.
DOI: 10.1021/tx800355k.
View