6.
Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R
. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev. 2016; 116(9):5338-431.
DOI: 10.1021/acs.chemrev.5b00589.
View
7.
Shi F, Luo D, Zhou X, Sun Q, Shen P, Wang S
. Combined effects of hyperthermia and chemotherapy on the regulate autophagy of oral squamous cell carcinoma cells under a hypoxic microenvironment. Cell Death Discov. 2021; 7(1):227.
PMC: 8408236.
DOI: 10.1038/s41420-021-00538-5.
View
8.
Whang C, Mozingo J, Rhoton Jr A
. Comparison of blood flow and patency in arterial and vein grafts to basilar artery. Stroke. 1975; 6(4):445-8.
DOI: 10.1161/01.str.6.4.445.
View
9.
Yallapu M, Othman S, Curtis E, Gupta B, Jaggi M, Chauhan S
. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials. 2010; 32(7):1890-905.
PMC: 3021632.
DOI: 10.1016/j.biomaterials.2010.11.028.
View
10.
Adams C, Israel L, Ostrovsky S, Taylor A, Poptani H, Lellouche J
. Development of Multifunctional Magnetic Nanoparticles for Genetic Engineering and Tracking of Neural Stem Cells. Adv Healthc Mater. 2016; 5(7):841-9.
DOI: 10.1002/adhm.201500885.
View
11.
Pfeiffer C, Rehbock C, Huhn D, Carrillo-Carrion C, Jimenez de Aberasturi D, Merk V
. Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J R Soc Interface. 2014; 11(96):20130931.
PMC: 4032524.
DOI: 10.1098/rsif.2013.0931.
View
12.
Ostolska I, Wisniewska M
. Application of the zeta potential measurements to explanation of colloidal CrO stability mechanism in the presence of the ionic polyamino acids. Colloid Polym Sci. 2014; 292(10):2453-2464.
PMC: 4164842.
DOI: 10.1007/s00396-014-3276-y.
View
13.
Tucek J, Zboril R, Petridis D
. Maghemite nanoparticles by view of Mössbauer spectroscopy. J Nanosci Nanotechnol. 2006; 6(4):926-47.
DOI: 10.1166/jnn.2006.183.
View
14.
Howes P, Green M, Bowers A, Parker D, Varma G, Kallumadil M
. Magnetic conjugated polymer nanoparticles as bimodal imaging agents. J Am Chem Soc. 2010; 132(28):9833-42.
DOI: 10.1021/ja1031634.
View
15.
Cai L, Qin X, Xu Z, Song Y, Jiang H, Wu Y
. Comparison of Cytotoxicity Evaluation of Anticancer Drugs between Real-Time Cell Analysis and CCK-8 Method. ACS Omega. 2019; 4(7):12036-12042.
PMC: 6682106.
DOI: 10.1021/acsomega.9b01142.
View
16.
Rosenfeldt S, Mickoleit F, Jorke C, Clement J, Markert S, Jerome V
. Towards standardized purification of bacterial magnetic nanoparticles for future in vivo applications. Acta Biomater. 2020; 120:293-303.
DOI: 10.1016/j.actbio.2020.07.042.
View
17.
Calero M, Gutierrez L, Salas G, Luengo Y, Lazaro A, Acedo P
. Efficient and safe internalization of magnetic iron oxide nanoparticles: two fundamental requirements for biomedical applications. Nanomedicine. 2013; 10(4):733-43.
DOI: 10.1016/j.nano.2013.11.010.
View
18.
Adepu S, Ramakrishna S
. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules. 2021; 26(19).
PMC: 8512302.
DOI: 10.3390/molecules26195905.
View
19.
Spiridonov V, Panova I, Makarova L, Afanasov M, Zezin S, Sybachin A
. The one-step synthesis of polymer-based magnetic γ-FeO/carboxymethyl cellulose nanocomposites. Carbohydr Polym. 2017; 177:269-274.
DOI: 10.1016/j.carbpol.2017.08.126.
View
20.
Colombo R, Salonia A, Da Pozzo L, Naspro R, Freschi M, Paroni R
. Combination of intravesical chemotherapy and hyperthermia for the treatment of superficial bladder cancer: preliminary clinical experience. Crit Rev Oncol Hematol. 2003; 47(2):127-39.
DOI: 10.1016/s1040-8428(03)00076-3.
View