» Articles » PMID: 37670938

A Novel Defined Risk Signature of Cuproptosis-related Long Non-coding RNA for Predicting Prognosis, Immune Infiltration, and Immunotherapy Response in Lung Adenocarcinoma

Overview
Journal Front Pharmacol
Date 2023 Sep 6
PMID 37670938
Authors
Affiliations
Soon will be listed here.
Abstract

Cuproptosis is a newly discovered non-apoptotic form of cell death that may be related to the development of tumors. Nonetheless, the potential role of cuproptosis-related lncRNAs in tumor immunity formation and patient-tailored treatment optimization of lung adenocarcinoma (LUAD) is still unclear. RNA sequencing and survival data of LUAD patients were downloaded from The Cancer Genome Atlas (TCGA) database for model training. The patients with LUAD in GSE29013, GSE30219, GSE31210, GSE37745, and GSE50081 were used for validation. The proofed cuproptosis-related genes were extracted from the previous studies. The Pearson correlation was applied to select cuproptosis-related lncRNAs. We chose differentially expressed cuproptosis-related lncRNAs in the tumor and normal tissues and allowed them to go to a Cox regression and a LASSO regression for a lncRNA signature that predicts the LUAD prognosis. Kaplan-Meier estimator, Cox model, ROC, tAUC, PCA, nomogram predictor, decision curve analysis, and real-time PCR were further deployed to confirm the model's accuracy. We examined this model's link to other regulated cell death forms. Applying TMB, immune-related signatures, and TIDE demonstrated the immunotherapeutic capabilities of signatures. We evaluated the relationship of our signature to anticancer drug sensitivity. GSEA, immune infiltration analysis, and function experiments further investigated the functional mechanisms of the signature and the role of immune cells in the prognostic power of the signature. An eight-lncRNA signature (TSPOAP1-AS1, AC107464.3, AC006449.7, LINC00324, COLCA1, HAGLR, MIR4435-2HG, and NKILA) was built and demonstrated owning prognostic power by applied to the validation cohort. Each signature gene was confirmed differentially expressed in the real world by real-time PCR. The eight-lncRNA signature correlated with 2321/3681 (63.05%) apoptosis-related genes, 11/20 (55.00%) necroptosis-related genes, 34/50 (68.00%) pyroptosis-related genes, and 222/380 (58.42%) ferroptosis-related genes. Immunotherapy analysis suggested that our signature may have utility in predicting immunotherapy efficacy in patients with LUAD. Mast cells were identified as key players that support the predicting capacity of the eight-lncRNA signature through the immune infiltrating analysis. In this study, an eight-lncRNA signature linked to cuproptosis was identified, which may improve LUAD management strategies. This signature may possess the ability to predict the effect of LUAD immunotherapy. In addition, infiltrating mast cells may affect the signature's prognostic power.

Citing Articles

Big data analysis and machine learning of the role of cuproptosis-related long non-coding RNAs (CuLncs) in the prognosis and immune landscape of ovarian cancer.

Kuang M, Liu Y, Chen H, Chen G, Gao T, You K Front Immunol. 2025; 16:1555782.

PMID: 40070821 PMC: 11893572. DOI: 10.3389/fimmu.2025.1555782.


Construction of a disulfidptosis-associated lncRNAs risk model to predict prognosis and immuno-infiltration analysis of lung adenocarcinoma.

Liu J, Nie H, Du W, Song W Pak J Med Sci. 2024; 40(10):2368-2372.

PMID: 39554671 PMC: 11568743. DOI: 10.12669/pjms.40.10.9025.


lncRNAs as prognostic markers and therapeutic targets in cuproptosis-mediated cancer.

Bhat A, Afzal M, Moglad E, Thapa R, Ali H, Almalki W Clin Exp Med. 2024; 24(1):226.

PMID: 39325172 PMC: 11427524. DOI: 10.1007/s10238-024-01491-0.


Comprehensive analysis and identification of subtypes and hub genes of high immune response in lung adenocarcinoma.

Li H, Lei Y, Lai X, Huang R, Xiang Y, Zhao Z BMC Pulm Med. 2024; 24(1):324.

PMID: 38965571 PMC: 11225283. DOI: 10.1186/s12890-024-03130-6.


Machine learning-based integration develops an immunogenic cell death-derived lncRNA signature for predicting prognosis and immunotherapy response in lung adenocarcinoma.

Sun J, Guo H, Zhang S, Nie Y, Zhou S, Zeng Y Sci Rep. 2024; 14(1):11724.

PMID: 38778157 PMC: 11111459. DOI: 10.1038/s41598-024-62569-z.


References
1.
Sauerbrei W, Royston P, Binder H . Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat Med. 2007; 26(30):5512-28. DOI: 10.1002/sim.3148. View

2.
Andrews L, Marciscano A, Drake C, Vignali D . LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 2017; 276(1):80-96. PMC: 5338468. DOI: 10.1111/imr.12519. View

3.
Fan C, Hu H, Shen Y, Wang Q, Mao Y, Ye B . PRF1 is a prognostic marker and correlated with immune infiltration in head and neck squamous cell carcinoma. Transl Oncol. 2021; 14(4):101042. PMC: 7905077. DOI: 10.1016/j.tranon.2021.101042. View

4.
Li S, Bu L, Cai L . Cuproptosis: lipoylated TCA cycle proteins-mediated novel cell death pathway. Signal Transduct Target Ther. 2022; 7(1):158. PMC: 9106713. DOI: 10.1038/s41392-022-01014-x. View

5.
Zhang Z, Zeng X, Wu Y, Liu Y, Zhang X, Song Z . Cuproptosis-Related Risk Score Predicts Prognosis and Characterizes the Tumor Microenvironment in Hepatocellular Carcinoma. Front Immunol. 2022; 13:925618. PMC: 9311491. DOI: 10.3389/fimmu.2022.925618. View