» Articles » PMID: 37667013

A SAM Analogue-utilizing Ribozyme for Site-specific RNA Alkylation in Living Cells

Overview
Journal Nat Chem
Specialty Chemistry
Date 2023 Sep 4
PMID 37667013
Authors
Affiliations
Soon will be listed here.
Abstract

Post-transcriptional RNA modification methods are in high demand for site-specific RNA labelling and analysis of RNA functions. In vitro-selected ribozymes are attractive tools for RNA research and have the potential to overcome some of the limitations of chemoenzymatic approaches with repurposed methyltransferases. Here we report an alkyltransferase ribozyme that uses a synthetic, stabilized S-adenosylmethionine (SAM) analogue and catalyses the transfer of a propargyl group to a specific adenosine in the target RNA. Almost quantitative conversion was achieved within 1 h under a wide range of reaction conditions in vitro, including physiological magnesium ion concentrations. A genetically encoded version of the SAM analogue-utilizing ribozyme (SAMURI) was expressed in HEK293T cells, and intracellular propargylation of the target adenosine was confirmed by specific fluorescent labelling. SAMURI is a general tool for the site-specific installation of the smallest tag for azide-alkyne click chemistry, which can be further functionalized with fluorophores, affinity tags or other functional probes.

Citing Articles

Site-Selective Modification and Labeling of Native RNA.

Kha T, Zhao Y, Zhu R Chemistry. 2025; 31(12):e202404244.

PMID: 39865772 PMC: 11855268. DOI: 10.1002/chem.202404244.


Structure and catalytic activity of the SAM-utilizing ribozyme SAMURI.

Chen H, Okuda T, Lenz A, Scheitl C, Schindelin H, Hobartner C Nat Chem Biol. 2025; .

PMID: 39779902 DOI: 10.1038/s41589-024-01808-w.


Engineering covalent small molecule-RNA complexes in living cells.

Bereiter R, Flemmich L, Nykiel K, Heel S, Geley S, Hanisch M Nat Chem Biol. 2025; .

PMID: 39762536 DOI: 10.1038/s41589-024-01801-3.


The Role of General Acid Catalysis in the Mechanism of an Alkyl Transferase Ribozyme.

Wilson T, McCarthy E, Ekesan S, Giese T, Li N, Huang L ACS Catal. 2024; 14(20):15294-15305.

PMID: 39444533 PMC: 11494507. DOI: 10.1021/acscatal.4c04571.


Enzymatic synthesis of -adenosyl-l-homocysteine and its nucleoside analogs from racemic homocysteine thiolactone.

Wen X, Leopold V, Seebeck F Chem Sci. 2024; .

PMID: 39282651 PMC: 11391342. DOI: 10.1039/d4sc03801k.


References
1.
Depmeier H, Hoffmann E, Bornewasser L, Kath-Schorr S . Strategies for Covalent Labeling of Long RNAs. Chembiochem. 2021; 22(19):2826-2847. PMC: 8518768. DOI: 10.1002/cbic.202100161. View

2.
Sharma A, Plant J, Rangel A, Meek K, Anamisis A, Hollien J . Fluorescent RNA labeling using self-alkylating ribozymes. ACS Chem Biol. 2014; 9(8):1680-4. DOI: 10.1021/cb5002119. View

3.
Schulz D, Holstein J, Rentmeister A . A chemo-enzymatic approach for site-specific modification of the RNA cap. Angew Chem Int Ed Engl. 2013; 52(30):7874-8. DOI: 10.1002/anie.201302874. View

4.
Yan L, Zaher H . How do cells cope with RNA damage and its consequences?. J Biol Chem. 2019; 294(41):15158-15171. PMC: 6791314. DOI: 10.1074/jbc.REV119.006513. View

5.
Willnow S, Martin M, Luscher B, Weinhold E . A selenium-based click AdoMet analogue for versatile substrate labeling with wild-type protein methyltransferases. Chembiochem. 2012; 13(8):1167-73. DOI: 10.1002/cbic.201100781. View