» Articles » PMID: 37653336

Regulation of Gene Editing Using T-DNA Concatenation

Overview
Journal Nat Plants
Specialties Biology
Genetics
Date 2023 Aug 31
PMID 37653336
Authors
Affiliations
Soon will be listed here.
Abstract

Transformation via Agrobacterium tumefaciens is the predominant method used to introduce exogenous DNA into plant genomes. Transfer DNA (T-DNA) originating from Agrobacterium can be integrated as a single copy or in complex concatenated forms, but the mechanisms affecting final T-DNA structure remain unknown. Here we demonstrate that inclusion of retrotransposon (RT)-derived sequences in T-DNA can increase T-DNA copy number by more than 50-fold in Arabidopsis thaliana. These additional T-DNA copies are organized into large concatemers, an effect primarily induced by the long terminal repeats (LTRs) of RTs that can be replicated using non-LTR DNA repeats. We found that T-DNA concatenation is dependent on the activity of the DNA repair proteins MRE11, RAD17 and ATR. Finally, we show that T-DNA concatenation can be used to increase the frequency of targeted mutagenesis and gene targeting. Overall, this work uncovers molecular determinants that modulate T-DNA copy number in Arabidopsis and demonstrates the utility of inducing T-DNA concatenation for plant gene editing.

Citing Articles

Double step screening using endogenous marker improves relative gene targeting efficiency in Arabidopsis.

Cheng Y, Zhang L, Ke Y, Dang X, Miki D Sci Rep. 2024; 14(1):30791.

PMID: 39730554 PMC: 11681217. DOI: 10.1038/s41598-024-80352-y.


The brassinosteroid receptor gene safeguards cell-autonomous brassinosteroid signaling across tissues.

Blanco-Tourinan N, Rana S, Nolan T, Li K, Vukasinovic N, Hsu C Sci Adv. 2024; 10(39):eadq3352.

PMID: 39321293 PMC: 11423886. DOI: 10.1126/sciadv.adq3352.


Cas12a-mediated gene targeting by sequential transformation strategy in Arabidopsis thaliana.

Li J, Wei Q, Cheng Y, Kong D, Kong Z, Ke Y BMC Plant Biol. 2024; 24(1):665.

PMID: 38997669 PMC: 11241819. DOI: 10.1186/s12870-024-05375-z.


Genomic consequences associated with Agrobacterium-mediated transformation of plants.

Thomson G, Dickinson L, Jacob Y Plant J. 2023; 117(2):342-363.

PMID: 37831618 PMC: 10841553. DOI: 10.1111/tpj.16496.


The power of repetition.

Puchta H Nat Plants. 2023; 9(9):1377-1378.

PMID: 37653337 DOI: 10.1038/s41477-023-01496-9.

References
1.
Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D . A high-throughput Arabidopsis reverse genetics system. Plant Cell. 2002; 14(12):2985-94. PMC: 151197. DOI: 10.1105/tpc.004630. View

2.
Cock P, Antao T, Chang J, Chapman B, Cox C, Dalke A . Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009; 25(11):1422-3. PMC: 2682512. DOI: 10.1093/bioinformatics/btp163. View

3.
Chilton M, Drummond M, Merio D, Sciaky D, Montoya A, Gordon M . Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell. 1977; 11(2):263-71. DOI: 10.1016/0092-8674(77)90043-5. View

4.
Inagaki S, Suzuki T, Ohto M, Urawa H, Horiuchi T, Nakamura K . Arabidopsis TEBICHI, with helicase and DNA polymerase domains, is required for regulated cell division and differentiation in meristems. Plant Cell. 2006; 18(4):879-92. PMC: 1425847. DOI: 10.1105/tpc.105.036798. View

5.
Kralemann L, de Pater S, Shen H, Kloet S, van Schendel R, Hooykaas P . Distinct mechanisms for genomic attachment of the 5' and 3' ends of Agrobacterium T-DNA in plants. Nat Plants. 2022; 8(5):526-534. DOI: 10.1038/s41477-022-01147-5. View