» Articles » PMID: 37649675

Formulation Optimization, and Evaluation of Niosomal Nanocarriers for Enhanced Topical Delivery of Cetirizine

Overview
Journal Saudi Pharm J
Specialty Pharmacy
Date 2023 Aug 31
PMID 37649675
Authors
Affiliations
Soon will be listed here.
Abstract

Cetirizine hydrochloride (CTZ), a second-generation anti-histaminic drug, has been recently explored for its effectiveness in the treatment of alopecia. Niosomes are surfactant-based nanovesicular systems that have promising applications in both topical and transdermal drug delivery. The aim of this study was to design topical CTZ niosomes for management of alopecia. Thin film hydration technique was implemented for the fabrication of CTZ niosomes. The niosomes were examined for vesicle size, surface charge, and entrapment efficiency. The optimized niosomal formulation was incorporated into a hydrogel base (HPMC) and explored for physical characteristics, permeation, and dermato-kinetic study. The optimized CTZ-loaded niosomal formulation showed an average size of 403.4 ± 15.6 nm, zeta potential of - 12.9 ± 1.7 mV, and entrapment efficiency percentage of 52.8 ± 1.9%. Compared to plain drug solution, entrapment of CTZ within niosomes significantly prolonged drug release up to 12 h. Most importantly, skin deposition studies and dermato-kinetic studies verified superior skin deposition/retention of CTZ from CTZ-loaded niosomal gels, compared to plain CTZ gel. CTZ-loaded niosomal gel permitted higher drug deposition percentage (19.2 ± 1.9%) and skin retention (AUC 1124.5 ± 87.9 μg/mL.h) of CTZ, compared to 7.52 ± 0.7% and 646.2 ± 44.6 μg/mL.h for plain CTZ gel, respectively. Collectively, niosomes might represent a promising carrier for the cutaneous delivery of cetirizine for the topical management of alopecia.

Citing Articles

Fabrication of Thymoquinone and Ascorbic Acid-Loaded Spanlastics Gel for Hyperpigmentation: In Vitro Release, Cytotoxicity, and Skin Permeation Studies.

Zaid Alkilani A, Alkhaldi R, Basheer H, Amro B, Alhusban M Pharmaceutics. 2025; 17(1).

PMID: 39861696 PMC: 11768207. DOI: 10.3390/pharmaceutics17010048.


Spanlastic-laden nanogel as a plausible platform for dermal delivery of bimatoprost with superior cutaneous deposition and hair regrowth efficiency in androgenic alopecia.

Almutairy B, Khafagy E, Aldawsari M, Alshetaili A, Alotaibi H, Lila A Int J Pharm X. 2024; 7:100240.

PMID: 38577618 PMC: 10992714. DOI: 10.1016/j.ijpx.2024.100240.


Design and Evaluation of Tretinoin Fatty Acid Vesicles for the Topical Treatment of Psoriasis.

Zhao Y, Wang C, Zou B, Fu L, Ren S, Zhang X Molecules. 2023; 28(23).

PMID: 38067597 PMC: 10708007. DOI: 10.3390/molecules28237868.


Ophthalmic Bimatoprost-Loaded Niosomal In Situ Gel: Preparation, Optimization, and In Vivo Pharmacodynamics Study.

Aldawsari M, Moglad E, Alotaibi H, Alkahtani H, Khafagy E Polymers (Basel). 2023; 15(21).

PMID: 37960016 PMC: 10649908. DOI: 10.3390/polym15214336.

References
1.
Hossein Mostafa D, Samadi A, Niknam S, Ahmad Nasrollahi S, Guishard A, Firooz A . Efficacy of Cetirizine 1% Versus Minoxidil 5% Topical Solution in the Treatment of Male Alopecia: A Randomized, Single-blind Controlled Study. J Pharm Pharm Sci. 2021; 24:191-199. DOI: 10.18433/jpps31456. View

2.
Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A . Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics. 2018; 10(2). PMC: 6027495. DOI: 10.3390/pharmaceutics10020057. View

3.
Kelly Y, Blanco A, Tosti A . Androgenetic Alopecia: An Update of Treatment Options. Drugs. 2016; 76(14):1349-64. DOI: 10.1007/s40265-016-0629-5. View

4.
Mokhtar M, Sammour O, Hammad M, Megrab N . Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. Int J Pharm. 2008; 361(1-2):104-11. DOI: 10.1016/j.ijpharm.2008.05.031. View

5.
Goindi S, Kumar G, Kumar N, Kaur A . Development of novel elastic vesicle-based topical formulation of cetirizine dihydrochloride for treatment of atopic dermatitis. AAPS PharmSciTech. 2013; 14(4):1284-93. PMC: 3840784. DOI: 10.1208/s12249-013-0017-3. View