6.
Barry J, Bui M, Levine M, Cepeda C
. Synaptic pathology in Huntington's disease: Beyond the corticostriatal pathway. Neurobiol Dis. 2021; 162:105574.
PMC: 9328779.
DOI: 10.1016/j.nbd.2021.105574.
View
7.
Klein M, Battagello D, Cardoso A, Hauser D, Bittencourt J, Correa R
. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell Mol Neurobiol. 2018; 39(1):31-59.
PMC: 11469830.
DOI: 10.1007/s10571-018-0632-3.
View
8.
BIRD E, Iversen L
. Huntington's chorea. Post-mortem measurement of glutamic acid decarboxylase, choline acetyltransferase and dopamine in basal ganglia. Brain. 1974; 97(3):457-72.
DOI: 10.1093/brain/97.1.457.
View
9.
Dallerac G, Levasseur G, Vatsavayai S, Milnerwood A, Cummings D, Kraev I
. Dysfunctional Dopaminergic Neurones in Mouse Models of Huntington's Disease: A Role for SK3 Channels. Neurodegener Dis. 2015; 15(2):93-108.
DOI: 10.1159/000375126.
View
10.
Cha J, Kosinski C, KERNER J, Alsdorf S, Mangiarini L, Davies S
. Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene. Proc Natl Acad Sci U S A. 1998; 95(11):6480-5.
PMC: 27817.
DOI: 10.1073/pnas.95.11.6480.
View
11.
Brouillet E, Conde F, Beal M, Hantraye P
. Replicating Huntington's disease phenotype in experimental animals. Prog Neurobiol. 1999; 59(5):427-68.
DOI: 10.1016/s0301-0082(99)00005-2.
View
12.
Beal M
. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?. Ann Neurol. 1992; 31(2):119-30.
DOI: 10.1002/ana.410310202.
View
13.
Gu M, Gash M, Mann V, Cooper J, Schapira A
. Mitochondrial defect in Huntington's disease caudate nucleus. Ann Neurol. 1996; 39(3):385-9.
DOI: 10.1002/ana.410390317.
View
14.
Brouillet E, Guyot M, Mittoux V, Altairac S, Conde F, Palfi S
. Partial inhibition of brain succinate dehydrogenase by 3-nitropropionic acid is sufficient to initiate striatal degeneration in rat. J Neurochem. 1998; 70(2):794-805.
DOI: 10.1046/j.1471-4159.1998.70020794.x.
View
15.
Bortolatto C, Reis A, Pinz M, Voss G, Oliveira R, Vogt A
. Selective A receptor antagonist SCH 58261 modulates striatal oxidative stress and alleviates toxicity induced by 3-Nitropropionic acid in male Wistar rats. Metab Brain Dis. 2017; 32(6):1919-1927.
DOI: 10.1007/s11011-017-0086-1.
View
16.
Borlongan C, Koutouzis T, Freeman T, Hauser R, Cahill D, Sanberg P
. Hyperactivity and hypoactivity in a rat model of Huntington's disease: the systemic 3-nitropropionic acid model. Brain Res Brain Res Protoc. 1997; 1(3):253-7.
DOI: 10.1016/s1385-299x(96)00037-2.
View
17.
Wiprich M, Zanandrea R, Altenhofen S, Bonan C
. Influence of 3-nitropropionic acid on physiological and behavioral responses in zebrafish larvae and adults. Comp Biochem Physiol C Toxicol Pharmacol. 2020; 234:108772.
DOI: 10.1016/j.cbpc.2020.108772.
View
18.
Razali K, Othman N, Mohd Nasir M, Doolaanea A, Kumar J, Ibrahim W
. The Promise of the Zebrafish Model for Parkinson's Disease: Today's Science and Tomorrow's Treatment. Front Genet. 2021; 12:655550.
PMC: 8082503.
DOI: 10.3389/fgene.2021.655550.
View
19.
Rink E, Wullimann M
. The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res. 2001; 889(1-2):316-30.
DOI: 10.1016/s0006-8993(00)03174-7.
View
20.
Lv D, Li L, Chen J, Wei S, Wang F, Hu H
. Sleep deprivation caused a memory defects and emotional changes in a rotenone-based zebrafish model of Parkinson's disease. Behav Brain Res. 2019; 372:112031.
DOI: 10.1016/j.bbr.2019.112031.
View