» Articles » PMID: 37648701

A Comprehensive Mathematical Model for Cardiac Perfusion

Overview
Journal Sci Rep
Specialty Science
Date 2023 Aug 30
PMID 37648701
Authors
Affiliations
Soon will be listed here.
Abstract

The aim of this paper is to introduce a new mathematical model that simulates myocardial blood perfusion that accounts for multiscale and multiphysics features. Our model incorporates cardiac electrophysiology, active and passive mechanics, hemodynamics, valve modeling, and a multicompartment Darcy model of perfusion. We consider a fully coupled electromechanical model of the left heart that provides input for a fully coupled Navier-Stokes-Darcy Model for myocardial perfusion. The fluid dynamics problem is modeled in a left heart geometry that includes large epicardial coronaries, while the multicompartment Darcy model is set in a biventricular myocardium. Using a realistic and detailed cardiac geometry, our simulations demonstrate the biophysical fidelity of our model in describing cardiac perfusion. Specifically, we successfully validate the model reliability by comparing in-silico coronary flow rates and average myocardial blood flow with clinically established values ranges reported in relevant literature. Additionally, we investigate the impact of a regurgitant aortic valve on myocardial perfusion, and our results indicate a reduction in myocardial perfusion due to blood flow taken away by the left ventricle during diastole. To the best of our knowledge, our work represents the first instance where electromechanics, hemodynamics, and perfusion are integrated into a single computational framework.

Citing Articles

Multiphysics simulations reveal haemodynamic impacts of patient-derived fibrosis-related changes in left atrial tissue mechanics.

Gonzalo A, Augustin C, Bifulco S, Telle A, Chahine Y, Kassar A J Physiol. 2024; 602(24):6789-6812.

PMID: 39513553 PMC: 11652225. DOI: 10.1113/JP287011.


Modeling cardiac microcirculation for the simulation of coronary flow and 3D myocardial perfusion.

Montino Pelagi G, Regazzoni F, Huyghe J, Baggiano A, Ali M, Bertoluzza S Biomech Model Mechanobiol. 2024; 23(6):1863-1888.

PMID: 38995488 PMC: 11554812. DOI: 10.1007/s10237-024-01873-z.


Advancing clinical translation of cardiac biomechanics models: a comprehensive review, applications and future pathways.

Rodero C, Baptiste T, Barrows R, Lewalle A, Niederer S, Strocchi M Front Phys. 2024; 11:1306210.

PMID: 38500690 PMC: 7615748. DOI: 10.3389/fphy.2023.1306210.


Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation.

Trayanova N, Lyon A, Shade J, Heijman J Physiol Rev. 2023; 104(3):1265-1333.

PMID: 38153307 PMC: 11381036. DOI: 10.1152/physrev.00017.2023.


lifex-ep: a robust and efficient software for cardiac electrophysiology simulations.

Africa P, Piersanti R, Regazzoni F, Bucelli M, Salvador M, Fedele M BMC Bioinformatics. 2023; 24(1):389.

PMID: 37828428 PMC: 10571323. DOI: 10.1186/s12859-023-05513-8.

References
1.
Woodworth L, Cansiz B, Kaliske M . A numerical study on the effects of spatial and temporal discretization in cardiac electrophysiology. Int J Numer Method Biomed Eng. 2021; 37(5):e3443. DOI: 10.1002/cnm.3443. View

2.
Santiago A, Aguado-Sierra J, Zavala-Ake M, Doste-Beltran R, Gomez S, Aris R . Fully coupled fluid-electro-mechanical model of the human heart for supercomputers. Int J Numer Method Biomed Eng. 2018; 34(12):e3140. DOI: 10.1002/cnm.3140. View

3.
Johnson K, Sharma P, Oshinski J . Coronary artery flow measurement using navigator echo gated phase contrast magnetic resonance velocity mapping at 3.0 T. J Biomech. 2007; 41(3):595-602. PMC: 2759278. DOI: 10.1016/j.jbiomech.2007.10.010. View

4.
Zingaro A, Bucelli M, Fumagalli I, Dede L, Quarteroni A . Modeling isovolumetric phases in cardiac flows by an Augmented Resistive Immersed Implicit Surface method. Int J Numer Method Biomed Eng. 2023; 39(12):e3767. DOI: 10.1002/cnm.3767. View

5.
Maceira A, Prasad S, Khan M, Pennell D . Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2006; 8(3):417-26. DOI: 10.1080/10976640600572889. View