» Articles » PMID: 37644475

Human Milk Extracellular Vesicles Enhance Muscle Growth and Physical Performance of Immature Mice Associating with Akt/mTOR/p70s6k Signaling Pathway

Overview
Publisher Biomed Central
Specialty Biotechnology
Date 2023 Aug 29
PMID 37644475
Authors
Affiliations
Soon will be listed here.
Abstract

Extracellular vesicles (EVs) play an important role in human and bovine milk composition. According to excellent published studies, it also exerts various functions in the gut, bone, or immune system. However, the effects of milk-derived EVs on skeletal muscle growth and performance have yet to be fully explored. Firstly, the current study examined the amino acids profile in human milk EVs (HME) and bovine milk EVs (BME) using targeted metabolomics. Secondly, HME and BME were injected in the quadriceps of mice for four weeks (1 time/3 days). Then, related muscle performance, muscle growth markers/pathways, and amino acids profile were detected or measured by grip strength analysis, rotarod performance testing, Jenner-Giemsa/H&E staining, Western blotting, and targeted metabolomics, respectively. Finally, HME and BME were co-cultured with C2C12 cells to detect the above-related indexes and further testify relative phenomena. Our findings mainly demonstrated that HME and BME significantly increase the diameter of C2C12 myotubes. HME treatment demonstrates higher exercise performance and muscle fiber densities than BME treatment. Besides, after KEGG and correlation analyses with biological function after HME and BME treatment, results showed L-Ornithine acts as a "notable marker" after HME treatment to affect mouse skeletal muscle growth or functions. Otherwise, L-Ornithine also significantly positively correlates with the activation of the AKT/mTOR pathway and myogenic regulatory factors (MRFs) and can also be observed in muscle and C2C12 cells after HME treatment. Overall, our study not only provides a novel result for the amino acid composition of HME and BME, but the current study also indicates the advantage of human milk on skeletal muscle growth and performance.

Citing Articles

Milk-derived extracellular vesicles and gut health.

Muttiah B, Law J NPJ Sci Food. 2025; 9(1):12.

PMID: 39885215 PMC: 11782608. DOI: 10.1038/s41538-025-00375-1.


Which casein micelle removal method is suitable for studies of human milk extracellular vesicles? A systematic comparison of four different treatments for casein depletion before extracellular vesicle isolation from human milk.

Cetinkaya H, Kongsomros S, Nommsen-Rivers L, Morrow A, Chutipongtanate S Extracell Vesicles Circ Nucl Acids. 2024; 5(2):221-232.

PMID: 39698537 PMC: 11648521. DOI: 10.20517/evcna.2024.02.


Dietary supplementation with succinic acid improves growth performance and flesh quality of adult Nile tilapia () fed a high-carbohydrate diet.

Cao M, Xie N, Zhang J, Jiang M, Huang F, Dong L Anim Nutr. 2024; 18:390-407.

PMID: 39309970 PMC: 11413691. DOI: 10.1016/j.aninu.2024.04.016.


Gouqi-derived nanovesicles (GqDNVs) inhibited dexamethasone-induced muscle atrophy associating with AMPK/SIRT1/PGC1α signaling pathway.

Zhou X, Xu S, Zhang Z, Tang M, Meng Z, Peng Z J Nanobiotechnology. 2024; 22(1):276.

PMID: 38778385 PMC: 11112783. DOI: 10.1186/s12951-024-02563-9.

References
1.
OReilly D, Dorodnykh D, Avdeenko N, Nekliudov N, Garssen J, Elolimy A . Perspective: The Role of Human Breast-Milk Extracellular Vesicles in Child Health and Disease. Adv Nutr. 2020; 12(1):59-70. PMC: 7849950. DOI: 10.1093/advances/nmaa094. View

2.
Bier D . Amino acid pharmacokinetics and safety assessment. J Nutr. 2003; 133(6 Suppl 1):2034S-2039S. DOI: 10.1093/jn/133.6.2034S. View

3.
Matic S, Dia V . Bovine milk exosomes affected proliferation of macrophages under hypoxia. Curr Res Food Sci. 2022; 5:2108-2113. PMC: 9641008. DOI: 10.1016/j.crfs.2022.11.002. View

4.
Yang Y, Sadri H, Prehn C, Adamski J, Rehage J, Danicke S . Targeted assessment of the metabolome in skeletal muscle and in serum of dairy cows supplemented with conjugated linoleic acid during early lactation. J Dairy Sci. 2021; 104(4):5095-5109. DOI: 10.3168/jds.2020-19185. View

5.
Senat M, Sentilhes L, Battut A, Benhamou D, Bydlowski S, Chantry A . Postpartum practice: guidelines for clinical practice from the French College of Gynaecologists and Obstetricians (CNGOF). Eur J Obstet Gynecol Reprod Biol. 2016; 202:1-8. DOI: 10.1016/j.ejogrb.2016.04.032. View