6.
Li J, Wang Y, Liu Y, Zhang Z, Zhai Y, Dai Y
. Polymorphisms and mutations of ACE2 and TMPRSS2 genes are associated with COVID-19: a systematic review. Eur J Med Res. 2022; 27(1):26.
PMC: 8861605.
DOI: 10.1186/s40001-022-00647-6.
View
7.
Khayat A, Assumpcao P, Khayat B, Thomaz Araujo T, Batista-Gomes J, Imbiriba L
. ACE2 polymorphisms as potential players in COVID-19 outcome. PLoS One. 2020; 15(12):e0243887.
PMC: 7769452.
DOI: 10.1371/journal.pone.0243887.
View
8.
Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S
. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020; 181(2):271-280.e8.
PMC: 7102627.
DOI: 10.1016/j.cell.2020.02.052.
View
9.
Al-Benna S
. Association of high level gene expression of ACE2 in adipose tissue with mortality of COVID-19 infection in obese patients. Obes Med. 2020; 19:100283.
PMC: 7368415.
DOI: 10.1016/j.obmed.2020.100283.
View
10.
Prado G, Taylor L, Zhou X, Ricupero D, Mierke D, Polgar P
. Mechanisms regulating the expression, self-maintenance, and signaling-function of the bradykinin B2 and B1 receptors. J Cell Physiol. 2002; 193(3):275-86.
DOI: 10.1002/jcp.10175.
View
11.
Brest P, Refae S, Mograbi B, Hofman P, Milano G
. Host Polymorphisms May Impact SARS-CoV-2 Infectivity. Trends Genet. 2020; 36(11):813-815.
PMC: 7416730.
DOI: 10.1016/j.tig.2020.08.003.
View
12.
Liu C, Li Y, Guan T, Lai Y, Shen Y, Zeyaweiding A
. ACE2 polymorphisms associated with cardiovascular risk in Uygurs with type 2 diabetes mellitus. Cardiovasc Diabetol. 2018; 17(1):127.
PMC: 6142339.
DOI: 10.1186/s12933-018-0771-3.
View
13.
Tikellis C, Pickering R, Tsorotes D, Du X, Kiriazis H, Nguyen-Huu T
. Interaction of diabetes and ACE2 in the pathogenesis of cardiovascular disease in experimental diabetes. Clin Sci (Lond). 2012; 123(8):519-29.
DOI: 10.1042/CS20110668.
View
14.
Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X
. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020; 6:11.
PMC: 7040011.
DOI: 10.1038/s41421-020-0147-1.
View
15.
Devaux C, Rolain J, Raoult D
. ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. J Microbiol Immunol Infect. 2020; 53(3):425-435.
PMC: 7201239.
DOI: 10.1016/j.jmii.2020.04.015.
View
16.
Huang G, Liang Q, Wang Y, Qin L, Yang H, Lin L
. Association of gene functional variants with gestational diabetes mellitus risk in a southern Chinese population. Front Endocrinol (Lausanne). 2022; 13:1052906.
PMC: 9752565.
DOI: 10.3389/fendo.2022.1052906.
View
17.
Procko E
. Deep mutagenesis in the study of COVID-19: a technical overview for the proteomics community. Expert Rev Proteomics. 2020; 17(9):633-638.
PMC: 7594187.
DOI: 10.1080/14789450.2020.1833721.
View
18.
Horowitz J, Kosmicki J, Damask A, Sharma D, Roberts G, Justice A
. Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nat Genet. 2022; 54(4):382-392.
PMC: 9005345.
DOI: 10.1038/s41588-021-01006-7.
View
19.
A Crackower M, Sarao R, Oudit G, Yagil C, Kozieradzki I, Scanga S
. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002; 417(6891):822-8.
DOI: 10.1038/nature00786.
View
20.
Darbani B
. The Expression and Polymorphism of Entry Machinery for COVID-19 in Human: Juxtaposing Population Groups, Gender, and Different Tissues. Int J Environ Res Public Health. 2020; 17(10).
PMC: 7277542.
DOI: 10.3390/ijerph17103433.
View