» Articles » PMID: 37640945

Strand-preferred Base Editing of Organellar and Nuclear Genomes Using CyDENT

Overview
Journal Nat Biotechnol
Specialty Biotechnology
Date 2023 Aug 28
PMID 37640945
Authors
Affiliations
Soon will be listed here.
Abstract

Transcription-activator-like effector (TALE)-based tools for base editing of nuclear and organellar DNA rely on double-stranded DNA deaminases, which edit substrate bases on both strands of DNA, reducing editing precision. Here, we present CyDENT base editing, a CRISPR-free, strand-selective, modular base editor. CyDENT comprises a pair of TALEs fused with a FokI nickase, a single-strand-specific cytidine deaminase and an exonuclease to generate a single-stranded DNA substrate for deamination. We demonstrate effective base editing in nuclear, mitochondrial and chloroplast genomes. At certain mitochondrial sites, we show editing efficiencies of 14% and strand specificity of 95%. Furthermore, by exchanging the CyDENT deaminase with one that prefers editing GC motifs, we demonstrate up to 20% mitochondrial base editing at sites that are otherwise inaccessible to editing by other methods. The modular nature of CyDENT enables a suite of bespoke base editors for various applications.

Citing Articles

Mitochondrial base editing: from principle, optimization to application.

Tang J, Du K Cell Biosci. 2025; 15(1):9.

PMID: 39856740 PMC: 11762502. DOI: 10.1186/s13578-025-01351-8.


Targeted C-to-T Base Editing in the Arabidopsis Plastid Genome.

Nakazato I, Arimura S Curr Protoc. 2025; 5(1):e70075.

PMID: 39757974 PMC: 11701795. DOI: 10.1002/cpz1.70075.


Unlocking the potential of Cupriavidus necator H16 as a platform for bioproducts production from carbon dioxide.

Wang Y, Cui L, Ding L, Su X, Luo H, Huang H World J Microbiol Biotechnol. 2024; 40(12):389.

PMID: 39572451 DOI: 10.1007/s11274-024-04200-x.


Advancing CRISPR base editing technology through innovative strategies and ideas.

Fan X, Lei Y, Wang L, Wu X, Li D Sci China Life Sci. 2024; 68(3):610-627.

PMID: 39231901 DOI: 10.1007/s11427-024-2699-5.


Unconstrained Precision Mitochondrial Genome Editing with αDdCBEs.

Castillo S, Simone B, Clark K, Devaux P, Ekker S Hum Gene Ther. 2024; 35(19-20):798-813.

PMID: 39212664 PMC: 11511777. DOI: 10.1089/hum.2024.073.


References
1.
Boore J . Animal mitochondrial genomes. Nucleic Acids Res. 1999; 27(8):1767-80. PMC: 148383. DOI: 10.1093/nar/27.8.1767. View

2.
Tuppen H, Blakely E, Turnbull D, Taylor R . Mitochondrial DNA mutations and human disease. Biochim Biophys Acta. 2009; 1797(2):113-28. DOI: 10.1016/j.bbabio.2009.09.005. View

3.
Greaves L, Reeve A, Taylor R, Turnbull D . Mitochondrial DNA and disease. J Pathol. 2011; 226(2):274-86. DOI: 10.1002/path.3028. View

4.
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J, Charpentier E . A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337(6096):816-21. PMC: 6286148. DOI: 10.1126/science.1225829. View

5.
Ran F, Hsu P, Wright J, Agarwala V, Scott D, Zhang F . Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013; 8(11):2281-2308. PMC: 3969860. DOI: 10.1038/nprot.2013.143. View