» Articles » PMID: 37637735

Generic Platform for the Multiplexed Targeted Electrochemical Detection of Osteoporosis-Associated Single Nucleotide Polymorphisms Using Recombinase Polymerase Solid-Phase Primer Elongation and Ferrocene-Modified Nucleoside Triphosphates

Abstract

Osteoporosis is a multifactorial disease influenced by genetic and environmental factors, which contributes to an increased risk of bone fracture, but early diagnosis of this disease cannot be achieved using current techniques. We describe a generic platform for the targeted electrochemical genotyping of SNPs identified by genome-wide association studies to be associated with a genetic predisposition to osteoporosis. The platform exploits isothermal solid-phase primer elongation with ferrocene-labeled nucleoside triphosphates. Thiolated reverse primers designed for each SNP were immobilized on individual gold electrodes of an array. These primers are designed to hybridize to the SNP site at their 3'OH terminal, and primer elongation occurs only where there is 100% complementarity, facilitating the identification and heterozygosity of each SNP under interrogation. The platform was applied to real blood samples, which were thermally lysed and directly used without the need for DNA extraction or purification. The results were validated using Taqman SNP genotyping assays and Sanger sequencing. The assay is complete in just 15 min with a total cost of 0.3€ per electrode. The platform is completely generic and has immense potential for deployment at the point of need in an automated device for targeted SNP genotyping with the only required end-user intervention being sample addition.

Citing Articles

Rapid Enzymatic Assay for Antiretroviral Drug Monitoring Using CRISPR-Cas12a-Enabled Readout.

Singh M, Chang M, Wang Q, Rodgers C, Lutz B, Olanrewaju A ACS Synth Biol. 2025; 14(2):510-519.

PMID: 39933068 PMC: 11852202. DOI: 10.1021/acssynbio.4c00674.


A multiplexed, allele-specific recombinase polymerase amplification assay with lateral flow readout for sickle cell disease detection.

Chang M, Natoli M, Wilkinson A, Tubman V, Airewele G, Richards-Kortum R Lab Chip. 2024; 24(17):4115-4127.

PMID: 39051493 PMC: 11334763. DOI: 10.1039/d4lc00281d.


Semiautomated Electrochemical Melting Curve Analysis Device for the Detection of an Osteoporosis Associated Single Nucleotide Polymorphism in Blood.

Yenice C, Chahin N, Jauset-Rubio M, Hall M, Biggs P, Dimai H Anal Chem. 2023; 95(38):14192-14202.

PMID: 37713191 PMC: 10534999. DOI: 10.1021/acs.analchem.3c01668.

References
1.
Ortiz M, Jauset-Rubio M, Skouridou V, Machado D, Viveiros M, Clark T . Electrochemical Detection of Single-Nucleotide Polymorphism Associated with Rifampicin Resistance in Using Solid-Phase Primer Elongation with Ferrocene-Linked Redox-Labeled Nucleotides. ACS Sens. 2021; 6(12):4398-4407. PMC: 8715531. DOI: 10.1021/acssensors.1c01710. View

2.
Wang D, Fan J, Siao C, Berno A, Young P, Sapolsky R . Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998; 280(5366):1077-82. DOI: 10.1126/science.280.5366.1077. View

3.
Zhu X, Bai W, Zheng H . Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res. 2021; 9(1):23. PMC: 8085014. DOI: 10.1038/s41413-021-00143-3. View

4.
Zhang J, Yang J, Zhang L, Luo J, Zhao H, Zhang J . A new SNP genotyping technology Target SNP-seq and its application in genetic analysis of cucumber varieties. Sci Rep. 2020; 10(1):5623. PMC: 7101363. DOI: 10.1038/s41598-020-62518-6. View

5.
Kanis J, Gluer C . An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int. 2000; 11(3):192-202. DOI: 10.1007/s001980050281. View