» Articles » PMID: 37624882

Accelerating DNA Computing Via Freeze-thaw Cycling

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2023 Aug 25
PMID 37624882
Authors
Affiliations
Soon will be listed here.
Abstract

DNA computing harnesses the immense potential of DNA molecules to enable sophisticated and transformative computational processes but is hindered by low computing speed. Here, we propose freeze-thaw cycling as a simple yet powerful method for high-speed DNA computing without complex procedures. Through iterative cycles, we achieve a substantial 20-fold speed enhancement in basic strand displacement reactions. This acceleration arises from the utilization of eutectic ice phase as a medium, temporarily increasing the effective local concentration of molecules during each cycle. In addition, the acceleration effect follows the Hofmeister series, where kosmotropic anions such as sulfate (SO) reduce eutectic phase volume, leading to a more notable enhancement in strand displacement reaction rates. Leveraging this phenomenon, freeze-thaw cycling demonstrates its generalizability for high-speed DNA computing across various circuit sizes, achieving up to a remarkable 120-fold enhancement in reaction rates. We envision its potential to revolutionize molecular computing and expand computational applications in diverse fields.

Citing Articles

Exploring Framework Nucleic Acids: A Perspective on Their Cellular Applications.

Wang Z, Wang X, He Y, Wu H, Mao R, Wang H JACS Au. 2024; 4(11):4110-4128.

PMID: 39610738 PMC: 11600171. DOI: 10.1021/jacsau.4c00776.


Enhanced Sensitivity of Cell Identification in Complex Environments Using Chirally Inverted L-DNA-Based Logic Devices.

Lai Z, Jin D, Tian Y, Chen X, Han D, Chen H Adv Sci (Weinh). 2024; 11(45):e2410642.

PMID: 39401418 PMC: 11615743. DOI: 10.1002/advs.202410642.


Co-freezing localized CRISPR-Cas12a system enables rapid and sensitive nucleic acid analysis.

Zhang L, Luo S, Li W, Su W, Chen S, Liu C J Nanobiotechnology. 2024; 22(1):602.

PMID: 39367442 PMC: 11452933. DOI: 10.1186/s12951-024-02831-8.


Predicting DNA Reactions with a Quantum Chemistry-Based Deep Learning Model.

Wang L, Li N, Cao M, Zhu Y, Xiong X, Li L Adv Sci (Weinh). 2024; 11(42):e2409880.

PMID: 39297371 PMC: 11558088. DOI: 10.1002/advs.202409880.

References
1.
Srinivas N, Parkin J, Seelig G, Winfree E, Soloveichik D . Enzyme-free nucleic acid dynamical systems. Science. 2017; 358(6369). DOI: 10.1126/science.aal2052. View

2.
Chatterjee G, Dalchau N, Muscat R, Phillips A, Seelig G . A spatially localized architecture for fast and modular DNA computing. Nat Nanotechnol. 2017; 12(9):920-927. DOI: 10.1038/nnano.2017.127. View

3.
Zhang S, Duzdevich D, Ding D, Szostak J . Freeze-thaw cycles enable a prebiotically plausible and continuous pathway from nucleotide activation to nonenzymatic RNA copying. Proc Natl Acad Sci U S A. 2022; 119(17):e2116429119. PMC: 9169909. DOI: 10.1073/pnas.2116429119. View

4.
Elbaz J, Lioubashevski O, Wang F, Remacle F, Levine R, Willner I . DNA computing circuits using libraries of DNAzyme subunits. Nat Nanotechnol. 2010; 5(6):417-22. DOI: 10.1038/nnano.2010.88. View

5.
Qian L, Winfree E . Scaling up digital circuit computation with DNA strand displacement cascades. Science. 2011; 332(6034):1196-201. DOI: 10.1126/science.1200520. View