6.
Karakka Kal A, Perwad Z, Karatt T, Nalakath J, Subhahar M
. Using Inductively Coupled Plasma Mass Spectrometry to Assess Essential and Performance-Enhancing Metals in the Urine of Racehorses. J Anal Toxicol. 2020; 44(5):490-498.
DOI: 10.1093/jat/bkaa004.
View
7.
Wang Z, Zhao G, Issotina Zibrila A, Li Y, Liu J, Feng W
. Acetylcholine ameliorated hypoxia-induced oxidative stress and apoptosis in trophoblast cells via p38 MAPK/NF-κB pathway. Mol Hum Reprod. 2021; 27(8).
DOI: 10.1093/molehr/gaab045.
View
8.
Lugun O, Singh J, Thakur R, Pandey A
. Cobalt oxide (Co3O4) nanoparticles induced genotoxicity in Chinese hamster lung fibroblast (V79) cells through modulation of reactive oxygen species. Mutagenesis. 2022; 37(1):44-59.
DOI: 10.1093/mutage/geac005.
View
9.
Oyagbemi A, Akinrinde A, Adebiyi O, Jarikre T, Omobowale T, Ola-Davies O
. Luteolin supplementation ameliorates cobalt-induced oxidative stress and inflammation by suppressing NF-кB/Kim-1 signaling in the heart and kidney of rats. Environ Toxicol Pharmacol. 2020; 80:103488.
DOI: 10.1016/j.etap.2020.103488.
View
10.
Kong D, Zhang F, Shao J, Wu L, Zhang X, Chen L
. Curcumin inhibits cobalt chloride-induced epithelial-to-mesenchymal transition associated with interference with TGF-β/Smad signaling in hepatocytes. Lab Invest. 2015; 95(11):1234-45.
DOI: 10.1038/labinvest.2015.107.
View
11.
Mahdavi Gorabi A, Kiaie N, Hajighasemi S, Banach M, Penson P, Jamialahmadi T
. Statin-Induced Nitric Oxide Signaling: Mechanisms and Therapeutic Implications. J Clin Med. 2019; 8(12).
PMC: 6947613.
DOI: 10.3390/jcm8122051.
View
12.
Kirkland D, Brock T, Haddouk H, Hargeaves V, Lloyd M, Mc Garry S
. New investigations into the genotoxicity of cobalt compounds and their impact on overall assessment of genotoxic risk. Regul Toxicol Pharmacol. 2015; 73(1):311-38.
DOI: 10.1016/j.yrtph.2015.07.016.
View
13.
Bailey J, Diotallevi M, Nicol T, McNeill E, Shaw A, Chuaiphichai S
. Nitric Oxide Modulates Metabolic Remodeling in Inflammatory Macrophages through TCA Cycle Regulation and Itaconate Accumulation. Cell Rep. 2019; 28(1):218-230.e7.
PMC: 6616861.
DOI: 10.1016/j.celrep.2019.06.018.
View
14.
Qin C, Yang S, Chu Y, Zhang H, Pang X, Chen L
. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2022; 7(1):215.
PMC: 9259607.
DOI: 10.1038/s41392-022-01064-1.
View
15.
Garoui E, Troudi A, Fetoui H, Soudani N, Boudawara T, Zeghal N
. Propolis attenuates cobalt induced-nephrotoxicity in adult rats and their progeny. Exp Toxicol Pathol. 2011; 64(7-8):837-46.
DOI: 10.1016/j.etp.2011.03.004.
View
16.
Tong Y, Tong K, Zhu Q, Wu Y, Yang Y, Zhang J
. Cobalt Chloride Induced Apoptosis by Inhibiting GPC3 Expression via the HIF-1α/c-Myc Axis in HepG2 Cells. Onco Targets Ther. 2019; 12:10663-10670.
PMC: 6901039.
DOI: 10.2147/OTT.S227215.
View
17.
Czarnek K, Terpilowska S, Siwicki A
. Selected aspects of the action of cobalt ions in the human body. Cent Eur J Immunol. 2015; 40(2):236-42.
PMC: 4637398.
DOI: 10.5114/ceji.2015.52837.
View
18.
Feehan J, Hariharan R, Buckenham T, Handley C, Bhatnagar A, Baba S
. Carnosine as a potential therapeutic for the management of peripheral vascular disease. Nutr Metab Cardiovasc Dis. 2022; 32(10):2289-2296.
DOI: 10.1016/j.numecd.2022.07.006.
View
19.
Maliyur Basavaraju A, Shivanna N, Yadavalli C, Garlapati P, Kandangath Raghavan A
. Ameliorative Effect of Ananas comosus on Cobalt Chloride-Induced Hypoxia in Caco2 cells via HIF-1α, GLUT 1, VEGF, ANG and FGF. Biol Trace Elem Res. 2020; 199(4):1345-1355.
DOI: 10.1007/s12011-020-02278-6.
View
20.
Oyagbemi A, Ajibade T, Esan O, Adetona M, Obisesan A, Adeogun A
. Naringin abrogates angiotensin-converting enzyme (ACE) activity and podocin signalling pathway in cobalt chloride-induced nephrotoxicity and hypertension. Biomarkers. 2022; 28(2):206-216.
DOI: 10.1080/1354750X.2022.2157489.
View