» Articles » PMID: 37620399

Engineering Co-utilization of Glucose and Xylose for Chemical Overproduction from Lignocellulose

Overview
Journal Nat Chem Biol
Date 2023 Aug 24
PMID 37620399
Authors
Affiliations
Soon will be listed here.
Abstract

Bio-refining lignocellulose could provide a sustainable supply of fuels and fine chemicals; however, the challenges associated with the co-utilization of xylose and glucose typically compromise the efficiency of lignocellulose conversion. Here we engineered the industrial yeast Ogataea polymorpha (Hansenula polymorpha) for lignocellulose biorefinery by facilitating the co-utilization of glucose and xylose to optimize the production of free fatty acids (FFAs) and 3-hydroxypropionic acid (3-HP) from lignocellulose. We rewired the central metabolism for the enhanced supply of acetyl-coenzyme A and nicotinamide adenine dinucleotide phosphate hydrogen, obtaining 30.0 g l of FFAs from glucose, with productivity of up to 0.27 g l h. Strengthening xylose uptake and catabolism promoted the synchronous utilization of glucose and xylose, which enabled the production of 38.2 g l and 7.0 g l FFAs from the glucose-xylose mixture and lignocellulosic hydrolysates, respectively. Finally, this efficient cell factory was metabolically transformed for 3-HP production with the highest titer of 79.6 g l in fed-batch fermentation in mixed glucose and xylose.

Citing Articles

Effect of W Modification on MoS Surface Edge in the Ethanolysis of Lignin into Platform Chemicals.

Wu K, Zhang Q, Zheng Y, Yuan J, Yu Q, Yang J Chem Bio Eng. 2025; 1(8):725-736.

PMID: 39974319 PMC: 11835260. DOI: 10.1021/cbe.3c00062.


High-level production of free fatty acids from lignocellulose hydrolysate by co-utilizing glucose and xylose in yeast.

Ni X, Li J, Yu W, Bai F, Zhao Z, Gao J Synth Syst Biotechnol. 2025; 10(2):401-409.

PMID: 39868360 PMC: 11758827. DOI: 10.1016/j.synbio.2024.12.009.


Multi-gene precision editing tool using CRISPR-Cas12a/Cpf1 system in Ogataea polymorpha.

Hou S, Yang S, Bai W Microb Cell Fact. 2025; 24(1):28.

PMID: 39838422 PMC: 11748851. DOI: 10.1186/s12934-025-02654-8.


Semi-rational design of an aromatic dioxygenase by substrate tunnel redirection.

Wang J, Ouyang X, Meng S, Li J, Liu L, Li C iScience. 2025; 28(1):111570.

PMID: 39811656 PMC: 11731282. DOI: 10.1016/j.isci.2024.111570.


Paradigm of engineering recalcitrant non-model microorganism with dominant metabolic pathway as a biorefinery chassis.

Yan X, Bao W, Wu Y, Zhang C, Mao Z, Yuan Q Nat Commun. 2024; 15(1):10441.

PMID: 39616174 PMC: 11608335. DOI: 10.1038/s41467-024-54897-5.


References
1.
Chandel A, Garlapati V, Singh A, Antunes F, da Silva S . The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresour Technol. 2018; 264:370-381. DOI: 10.1016/j.biortech.2018.06.004. View

2.
Reshmy R, Philip E, Madhavan A, Sirohi R, Pugazhendhi A, Binod P . Lignocellulose in future biorefineries: Strategies for cost-effective production of biomaterials and bioenergy. Bioresour Technol. 2021; 344(Pt B):126241. DOI: 10.1016/j.biortech.2021.126241. View

3.
Zhang G, Liu J, Kong I, Kwak S, Jin Y . Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Curr Opin Chem Biol. 2015; 29:49-57. DOI: 10.1016/j.cbpa.2015.09.008. View

4.
Young E, Comer A, Huang H, Alper H . A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae. Metab Eng. 2012; 14(4):401-11. DOI: 10.1016/j.ymben.2012.03.004. View

5.
Young E, Tong A, Bui H, Spofford C, Alper H . Rewiring yeast sugar transporter preference through modifying a conserved protein motif. Proc Natl Acad Sci U S A. 2013; 111(1):131-6. PMC: 3890853. DOI: 10.1073/pnas.1311970111. View