6.
Patin E, Hasan M, Bergstedt J, Rouilly V, Libri V, Urrutia A
. Natural variation in the parameters of innate immune cells is preferentially driven by genetic factors. Nat Immunol. 2018; 19(3):302-314.
DOI: 10.1038/s41590-018-0049-7.
View
7.
Ding M, Kaspersson K, Murray D, Bardelle C
. High-throughput flow cytometry for drug discovery: principles, applications, and case studies. Drug Discov Today. 2017; 22(12):1844-1850.
DOI: 10.1016/j.drudis.2017.09.005.
View
8.
Pachon G, Caragol I, Petriz J
. Subjectivity and flow cytometric variability. Nat Rev Immunol. 2012; 12(5):396.
DOI: 10.1038/nri3158-c1.
View
9.
Virtanen P, Gommers R, Oliphant T, Haberland M, Reddy T, Cournapeau D
. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020; 17(3):261-272.
PMC: 7056644.
DOI: 10.1038/s41592-019-0686-2.
View
10.
Opzoomer J, Timms J, Blighe K, Mourikis T, Chapuis N, Bekoe R
. provides a computational framework for the nonspecialist to profile high-dimensional cytometry data. Elife. 2021; 10.
PMC: 8112868.
DOI: 10.7554/eLife.62915.
View
11.
Orru V, Steri M, Sidore C, Marongiu M, Serra V, Olla S
. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet. 2020; 52(10):1036-1045.
PMC: 8517961.
DOI: 10.1038/s41588-020-0684-4.
View
12.
Parks D, Roederer M, Moore W
. A new "Logicle" display method avoids deceptive effects of logarithmic scaling for low signals and compensated data. Cytometry A. 2006; 69(6):541-51.
DOI: 10.1002/cyto.a.20258.
View
13.
Orru V, Steri M, Sole G, Sidore C, Virdis F, Dei M
. Genetic variants regulating immune cell levels in health and disease. Cell. 2013; 155(1):242-56.
PMC: 5541764.
DOI: 10.1016/j.cell.2013.08.041.
View
14.
Hahne F, LeMeur N, Brinkman R, Ellis B, Haaland P, Sarkar D
. flowCore: a Bioconductor package for high throughput flow cytometry. BMC Bioinformatics. 2009; 10:106.
PMC: 2684747.
DOI: 10.1186/1471-2105-10-106.
View
15.
White S, Quinn J, Enzor J, Staats J, Mosier S, Almarode J
. FlowKit: A Python Toolkit for Integrated Manual and Automated Cytometry Analysis Workflows. Front Immunol. 2021; 12:768541.
PMC: 8602902.
DOI: 10.3389/fimmu.2021.768541.
View
16.
Malek M, Taghiyar M, Chong L, Finak G, Gottardo R, Brinkman R
. flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification. Bioinformatics. 2014; 31(4):606-7.
PMC: 4325545.
DOI: 10.1093/bioinformatics/btu677.
View
17.
Sahir F, Mateo J, Steinhoff M, Siveen K
. Development of a 43 color panel for the characterization of conventional and unconventional T-cell subsets, B cells, NK cells, monocytes, dendritic cells, and innate lymphoid cells using spectral flow cytometry. Cytometry A. 2020; .
PMC: 11497249.
DOI: 10.1002/cyto.a.24288.
View
18.
Black C, Duensing T, Trinkle L, Dunlay R
. Cell-based screening using high-throughput flow cytometry. Assay Drug Dev Technol. 2010; 9(1):13-20.
PMC: 3045571.
DOI: 10.1089/adt.2010.0308.
View
19.
Rahim A, Meskas J, Drissler S, Yue A, Lorenc A, Laing A
. High throughput automated analysis of big flow cytometry data. Methods. 2017; 134-135:164-176.
PMC: 5815930.
DOI: 10.1016/j.ymeth.2017.12.015.
View
20.
Finak G, Frelinger J, Jiang W, Newell E, Ramey J, Davis M
. OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis. PLoS Comput Biol. 2014; 10(8):e1003806.
PMC: 4148203.
DOI: 10.1371/journal.pcbi.1003806.
View