6.
Ammer T, Schutzenmeister A, Prokosch H, Rauh M, Rank C, Zierk J
. refineR: A Novel Algorithm for Reference Interval Estimation from Real-World Data. Sci Rep. 2021; 11(1):16023.
PMC: 8346497.
DOI: 10.1038/s41598-021-95301-2.
View
7.
Hoq M, Matthews S, Donath S, Carlin J, Ignjatovic V, Monagle P
. Paediatric Reference Intervals: Current Status, Gaps, Challenges and Future Considerations. Clin Biochem Rev. 2020; 41(2):43-52.
PMC: 7255313.
DOI: 10.33176/AACB-19-00036.
View
8.
Higgins V, Chan M, Nieuwesteeg M, Hoffman B, Bromberg I, Gornall D
. Transference of CALIPER pediatric reference intervals to biochemical assays on the Roche cobas 6000 and the Roche Modular P. Clin Biochem. 2015; 49(1-2):139-49.
DOI: 10.1016/j.clinbiochem.2015.08.018.
View
9.
Metz M, Loh T
. Describing children's changes using clinical chemistry analytes. Clin Chem Lab Med. 2016; 55(1):1-2.
DOI: 10.1515/cclm-2016-0911.
View
10.
Zierk J, Baum H, Bertram A, Boeker M, Buchwald A, Cario H
. High-resolution pediatric reference intervals for 15 biochemical analytes described using fractional polynomials. Clin Chem Lab Med. 2021; 59(7):1267-1278.
DOI: 10.1515/cclm-2020-1371.
View
11.
Hoq M, Canterford L, Matthews S, Khanom G, Ignjatovic V, Monagle P
. Statistical methods used in the estimation of age-specific paediatric reference intervals for laboratory blood tests: A systematic review. Clin Biochem. 2020; 85:12-19.
DOI: 10.1016/j.clinbiochem.2020.08.002.
View
12.
Cole T, Green P
. Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med. 1992; 11(10):1305-19.
DOI: 10.1002/sim.4780111005.
View
13.
Estey M, Cohen A, Colantonio D, Chan M, Marvasti T, Randell E
. CLSI-based transference of the CALIPER database of pediatric reference intervals from Abbott to Beckman, Ortho, Roche and Siemens Clinical Chemistry Assays: direct validation using reference samples from the CALIPER cohort. Clin Biochem. 2013; 46(13-14):1197-219.
DOI: 10.1016/j.clinbiochem.2013.04.001.
View
14.
Wilson S, Bohn M, Madsen A, Hundhausen T, Adeli K
. LMS-based continuous reference percentiles for 14 laboratory parameters in the CALIPER cohort of healthy children and adolescents. Clin Chem Lab Med. 2023; 61(6):1105-1115.
DOI: 10.1515/cclm-2022-1077.
View
15.
Zierk J, Hirschmann J, Toddenroth D, Arzideh F, Haeckel R, Bertram A
. Next-generation reference intervals for pediatric hematology. Clin Chem Lab Med. 2019; 57(10):1595-1607.
DOI: 10.1515/cclm-2018-1236.
View
16.
Rigby R, Stasinopoulos D
. Smooth centile curves for skew and kurtotic data modelled using the Box-Cox power exponential distribution. Stat Med. 2004; 23(19):3053-76.
DOI: 10.1002/sim.1861.
View
17.
Coskun A, Zarepour A, Zarrabi A
. Physiological Rhythms and Biological Variation of Biomolecules: The Road to Personalized Laboratory Medicine. Int J Mol Sci. 2023; 24(7).
PMC: 10094461.
DOI: 10.3390/ijms24076275.
View
18.
Wilson S, Bohn M, Hall A, Higgins V, Abdelhaleem M, Adeli K
. Continuous reference curves for common hematology markers in the CALIPER cohort of healthy children and adolescents on the Sysmex XN-3000 system. Int J Lab Hematol. 2021; 43(6):1394-1402.
DOI: 10.1111/ijlh.13670.
View
19.
. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr Suppl. 2006; 450:76-85.
DOI: 10.1111/j.1651-2227.2006.tb02378.x.
View
20.
Bohn M, Higgins V, Tahmasebi H, Hall A, Liu E, Adeli K
. Complex biological patterns of hematology parameters in childhood necessitating age- and sex-specific reference intervals for evidence-based clinical interpretation. Int J Lab Hematol. 2020; 42(6):750-760.
DOI: 10.1111/ijlh.13306.
View