» Articles » PMID: 37591851

An Aqueous Electrolyte Densified by Perovskite SrTiO Enabling High-voltage Zinc-ion Batteries

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Aug 17
PMID 37591851
Authors
Affiliations
Soon will be listed here.
Abstract

The conventional weak acidic electrolyte for aqueous zinc-ion batteries breeds many challenges, such as undesirable side reactions, and inhomogeneous zinc dendrite growth, leading to low Coulombic efficiency, low specific capacity, and poor cycle stability. Here, an aqueous densified electrolyte, namely, a conventional aqueous electrolyte with addition of perovskite SrTiO powder, is developed to achieve high-performance aqueous zinc-ion batteries. The densified electrolyte demonstrates unique properties of reducing water molecule activity, improving Zn transference number, and inducing homogeneous and preferential deposition of Zn (002). As a result, the densified electrolyte exhibits an ultra-long cycle stability over 1000 cycles in Zn/Ti half cells. In addition, the densified electrolyte enables Zn/MnO cells with a high specific capacity of 328.2 mAh g at 1 A g after 500 cycles under an extended voltage range. This work provides a simple strategy to induce dendrite-free deposition characteristics and high performance in high-voltage aqueous zinc-ion batteries.

Citing Articles

In-situ positive electrode-electrolyte interphase construction enables stable Ah-level Zn-MnO batteries.

Lai G, Zhao Z, Zhang H, Hu X, Lu B, Liang S Nat Commun. 2025; 16(1):2194.

PMID: 40038296 PMC: 11880571. DOI: 10.1038/s41467-025-57579-y.


Design of asymmetric electrolytes for aqueous zinc batteries.

Chen S, Zhi C Commun Chem. 2025; 8(1):20.

PMID: 39856186 PMC: 11759685. DOI: 10.1038/s42004-024-01405-x.


A tellurium iodide perovskite structure enabling eleven-electron transfer in zinc ion batteries.

Wang S, Wei Z, Hong H, Guo X, Wang Y, Chen Z Nat Commun. 2025; 16(1):511.

PMID: 39779662 PMC: 11711384. DOI: 10.1038/s41467-024-55385-6.


Unraveling Energy Storage Performance and Mechanism of Metal-Organic Framework-Derived Copper Vanadium Oxides with Tunable Composition for Aqueous Zinc-Ion Batteries.

Kakarla A, Bandi H, Syed W, Narsimulu D, Shanthappa R, Yu J Small Methods. 2024; 9(1):e2400819.

PMID: 39285816 PMC: 11740948. DOI: 10.1002/smtd.202400819.

References
1.
Chao D, Zhou W, Ye C, Zhang Q, Chen Y, Gu L . An Electrolytic Zn-MnO Battery for High-Voltage and Scalable Energy Storage. Angew Chem Int Ed Engl. 2019; 58(23):7823-7828. DOI: 10.1002/anie.201904174. View

2.
Zhang Q, Luan J, Tang Y, Ji X, Wang H . Interfacial Design of Dendrite-Free Zinc Anodes for Aqueous Zinc-Ion Batteries. Angew Chem Int Ed Engl. 2020; 59(32):13180-13191. DOI: 10.1002/anie.202000162. View

3.
Yang H, Zhang T, Chen D, Tan Y, Zhou W, Li L . Protocol in Evaluating Capacity of Zn-Mn Aqueous Batteries: A Clue of pH. Adv Mater. 2023; 35(24):e2300053. DOI: 10.1002/adma.202300053. View

4.
Kresse , Hafner . Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter. 1993; 47(1):558-561. DOI: 10.1103/physrevb.47.558. View

5.
Du Y, Li Y, Xu B, Liu T, Liu X, Ma F . Electrolyte Salts and Additives Regulation Enables High Performance Aqueous Zinc Ion Batteries: A Mini Review. Small. 2021; 18(43):e2104640. DOI: 10.1002/smll.202104640. View