» Articles » PMID: 37581938

SETD1A Drives Stemness by Reprogramming the Epigenetic Landscape in Hepatocellular Carcinoma Stem Cells

Overview
Journal JCI Insight
Date 2023 Aug 15
PMID 37581938
Authors
Affiliations
Soon will be listed here.
Abstract

Cancer stem cells (CSCs) are responsible for tumor progression and recurrence. However, the mechanisms regulating hepatocellular carcinoma (HCC) stemness remain unclear. Applying a genome-scale CRISPR knockout screen, we identified that the H3K4 methyltransferase SETD1A and other members of Trithorax group proteins drive cancer stemness in HCC. SET domain containing 1A (SETD1A) was positively correlated with poor clinical outcome in patients with HCC. Combination of SETD1A and serum alpha fetoprotein substantially improved the accuracy of predicting HCC relapse. Mechanistically, SETD1A mediates transcriptional activation of various histone-modifying enzymes, facilitates deposition of trimethylated H3K4 (H3K4me3) and H3K27me3, and activates oncogenic enhancers and super-enhancers, leading to activation of oncogenes and inactivation of tumor suppressor genes simultaneously in liver CSCs. In addition, SETD1A cooperates with polyadenylate-binding protein cytoplasmic 1 to regulate H3K4me3 modification on oncogenes. Our data pinpoint SETD1A as a key epigenetic regulator driving HCC stemness and progression, highlighting the potential of SETD1A as a candidate target for HCC intervention and therapy.

Citing Articles

Potential mechanism of circKIAA1429 accelerating the progression of hepatocellular carcinoma.

Yuan Y, Huang J, Wei G, Hu G, Yu H, Tao Y Infect Agent Cancer. 2025; 20(1):12.

PMID: 40025575 PMC: 11872318. DOI: 10.1186/s13027-025-00645-3.


ATP6V1D drives hepatocellular carcinoma stemness and progression via both lysosome acidification-dependent and -independent mechanisms.

Xu Z, Liu R, Ke H, Xu F, Yang P, Zhang W Autophagy. 2024; 21(3):513-529.

PMID: 39316516 PMC: 11849949. DOI: 10.1080/15548627.2024.2406186.


SLC4A11 mediates ammonia import and promotes cancer stemness in hepatocellular carcinoma.

Elaimy A, El-Derany M, James J, Wang Z, Pearson A, Holcomb E JCI Insight. 2024; 9(21).

PMID: 39287988 PMC: 11601557. DOI: 10.1172/jci.insight.184826.


The intricate interplay between cancer stem cells and cell-of-origin of cancer: implications for therapeutic strategies.

Bamodu O, Chung C, Pisanic 2nd T, Wu A Front Oncol. 2024; 14:1404628.

PMID: 38800385 PMC: 11116576. DOI: 10.3389/fonc.2024.1404628.


TMX2 potentiates cell viability of hepatocellular carcinoma by promoting autophagy and mitophagy.

Zhang W, Tang Y, Yang P, Chen Y, Xu Z, Qi C Autophagy. 2024; 20(10):2146-2163.

PMID: 38797513 PMC: 11423672. DOI: 10.1080/15548627.2024.2358732.

References
1.
Creyghton M, Cheng A, Welstead G, Kooistra T, Carey B, Steine E . Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 2010; 107(50):21931-6. PMC: 3003124. DOI: 10.1073/pnas.1016071107. View

2.
Si Y, Liu J, Shen H, Zhang C, Wu Y, Huang Y . Fisetin decreases TET1 activity and CCNY/CDK16 promoter 5hmC levels to inhibit the proliferation and invasion of renal cancer stem cell. J Cell Mol Med. 2018; 23(2):1095-1105. PMC: 6349178. DOI: 10.1111/jcmm.14010. View

3.
Ali S, Justilien V, Jamieson L, Murray N, Fields A . Protein Kinase Cι Drives a NOTCH3-dependent Stem-like Phenotype in Mutant KRAS Lung Adenocarcinoma. Cancer Cell. 2016; 29(3):367-378. PMC: 4795153. DOI: 10.1016/j.ccell.2016.02.012. View

4.
Lee T, Guan X, Ma S . Cancer stem cells in hepatocellular carcinoma - from origin to clinical implications. Nat Rev Gastroenterol Hepatol. 2021; 19(1):26-44. DOI: 10.1038/s41575-021-00508-3. View

5.
Zhao W, Ma B, Tian Z, Han H, Tang J, Dong B . Inhibiting CBX4 efficiently protects hepatocellular carcinoma cells against sorafenib resistance. Br J Cancer. 2021; 124(7):1237-1248. PMC: 8007794. DOI: 10.1038/s41416-020-01240-6. View