6.
Alefantis P, Lakshminarasimhan K, Avila E, Noel J, Pitkow X, Angelaki D
. Sensory Evidence Accumulation Using Optic Flow in a Naturalistic Navigation Task. J Neurosci. 2022; 42(27):5451-5462.
PMC: 9270913.
DOI: 10.1523/JNEUROSCI.2203-21.2022.
View
7.
Remington E, Narain D, Hosseini E, Jazayeri M
. Flexible Sensorimotor Computations through Rapid Reconfiguration of Cortical Dynamics. Neuron. 2018; 98(5):1005-1019.e5.
PMC: 6009852.
DOI: 10.1016/j.neuron.2018.05.020.
View
8.
Lakshminarasimhan K, Avila E, Neyhart E, DeAngelis G, Pitkow X, Angelaki D
. Tracking the Mind's Eye: Primate Gaze Behavior during Virtual Visuomotor Navigation Reflects Belief Dynamics. Neuron. 2020; 106(4):662-674.e5.
PMC: 7323886.
DOI: 10.1016/j.neuron.2020.02.023.
View
9.
Remington E, Egger S, Narain D, Wang J, Jazayeri M
. A Dynamical Systems Perspective on Flexible Motor Timing. Trends Cogn Sci. 2018; 22(10):938-952.
PMC: 6166486.
DOI: 10.1016/j.tics.2018.07.010.
View
10.
Pillow J, Shlens J, Paninski L, Sher A, Litke A, Chichilnisky E
. Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature. 2008; 454(7207):995-9.
PMC: 2684455.
DOI: 10.1038/nature07140.
View
11.
Rumyantsev O, Lecoq J, Hernandez O, Zhang Y, Savall J, Chrapkiewicz R
. Fundamental bounds on the fidelity of sensory cortical coding. Nature. 2020; 580(7801):100-105.
DOI: 10.1038/s41586-020-2130-2.
View
12.
Hart E, Huk A
. Recurrent circuit dynamics underlie persistent activity in the macaque frontoparietal network. Elife. 2020; 9.
PMC: 7205463.
DOI: 10.7554/eLife.52460.
View
13.
Noel J, Caziot B, Bruni S, Fitzgerald N, Avila E, Angelaki D
. Supporting generalization in non-human primate behavior by tapping into structural knowledge: Examples from sensorimotor mappings, inference, and decision-making. Prog Neurobiol. 2021; 201:101996.
PMC: 8096669.
DOI: 10.1016/j.pneurobio.2021.101996.
View
14.
Zanto T, Gazzaley A
. Fronto-parietal network: flexible hub of cognitive control. Trends Cogn Sci. 2013; 17(12):602-3.
PMC: 3873155.
DOI: 10.1016/j.tics.2013.10.001.
View
15.
Chaisangmongkon W, Swaminathan S, Freedman D, Wang X
. Computing by Robust Transience: How the Fronto-Parietal Network Performs Sequential, Category-Based Decisions. Neuron. 2017; 93(6):1504-1517.e4.
PMC: 5586485.
DOI: 10.1016/j.neuron.2017.03.002.
View
16.
Stringer C, Pachitariu M, Steinmetz N, Carandini M, Harris K
. High-dimensional geometry of population responses in visual cortex. Nature. 2019; 571(7765):361-365.
PMC: 6642054.
DOI: 10.1038/s41586-019-1346-5.
View
17.
Zohary E, Shadlen M, Newsome W
. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature. 1994; 370(6485):140-3.
DOI: 10.1038/370140a0.
View
18.
Rigotti M, Ben Dayan Rubin D, Wang X, Fusi S
. Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses. Front Comput Neurosci. 2010; 4:24.
PMC: 2967380.
DOI: 10.3389/fncom.2010.00024.
View
19.
Noel J, Balzani E, Avila E, Lakshminarasimhan K, Bruni S, Alefantis P
. Coding of latent variables in sensory, parietal, and frontal cortices during closed-loop virtual navigation. Elife. 2022; 11.
PMC: 9668339.
DOI: 10.7554/eLife.80280.
View
20.
Zhang R, Pitkow X, Angelaki D
. Inductive biases of neural network modularity in spatial navigation. Sci Adv. 2024; 10(29):eadk1256.
PMC: 11259174.
DOI: 10.1126/sciadv.adk1256.
View