» Articles » PMID: 37571703

Faster Walking Speeds Require Greater Activity from the Primary Motor Cortex in Older Adults Compared to Younger Adults

Overview
Journal Sensors (Basel)
Publisher MDPI
Specialty Biotechnology
Date 2023 Aug 12
PMID 37571703
Authors
Affiliations
Soon will be listed here.
Abstract

Gait speed declines with age and slower walking speeds are associated with poor health outcomes. Understanding why we do not walk faster as we age, despite being able to, has implications for rehabilitation. Changes in regional oxygenated haemoglobin (HbO2) across the frontal lobe were monitored using functional near infrared spectroscopy in 17 young and 18 older adults while they walked on a treadmill for 5 min, alternating between 30 s of walking at a preferred and fast (120% preferred) speed. Gait was quantified using a triaxial accelerometer (lower back). Differences between task (preferred/fast) and group (young/old) and associations between regional HbO2 and gait were evaluated. Paired tests indicated increased HbO2 in the supplementary motor area (right) and primary motor cortex (left and right) in older adults when walking fast ( < 0.006). HbO2 did not significantly change in the young when walking fast, despite both groups modulating gait. When evaluating the effect of age (linear mixed effects model), greater increases in HbO2 were observed for older adults when walking fast (prefrontal cortex, premotor cortex, supplementary motor area and primary motor cortex) compared to young adults. In older adults, increased step length and reduced step length variability were associated with larger increases in HbO2 across multiple regions when walking fast. Walking fast required increased activation of motor regions in older adults, which may serve as a therapeutic target for rehabilitation. Widespread increases in HbO2 across the frontal cortex highlight that walking fast represents a resource-intensive task as we age.

Citing Articles

Age-related increase in the excitability of mouse layer V pyramidal neurons in the primary motor cortex is accompanied by an increased persistent inward current.

Viteri J, Bueschke N, Santin J, Arnold W Geroscience. 2024; .

PMID: 39472350 DOI: 10.1007/s11357-024-01405-8.


Turning alterations detected by mobile health technology in idiopathic REM sleep behavior disorder.

Zatti C, Pilotto A, Hansen C, Rizzardi A, Catania M, Romijnders R NPJ Parkinsons Dis. 2024; 10(1):64.

PMID: 38499543 PMC: 10948811. DOI: 10.1038/s41531-024-00682-6.


Biological and Physical Performance Markers for Early Detection of Cognitive Impairment in Older Adults.

Kerminen H, Marzetti E, DAngelo E J Clin Med. 2024; 13(3).

PMID: 38337499 PMC: 10856537. DOI: 10.3390/jcm13030806.

References
1.
Rosano C, Longstreth Jr W, Boudreau R, Taylor C, Du Y, Kuller L . High blood pressure accelerates gait slowing in well-functioning older adults over 18-years of follow-up. J Am Geriatr Soc. 2011; 59(3):390-7. PMC: 3637929. DOI: 10.1111/j.1532-5415.2010.03282.x. View

2.
George C, Verghese J . Polypharmacy and Gait Performance in Community-dwelling Older Adults. J Am Geriatr Soc. 2017; 65(9):2082-2087. PMC: 5603372. DOI: 10.1111/jgs.14957. View

3.
Fritz S, Lusardi M . White paper: "walking speed: the sixth vital sign". J Geriatr Phys Ther. 2009; 32(2):46-9. View

4.
Yardley L, Beyer N, Hauer K, Kempen G, Piot-Ziegler C, Todd C . Development and initial validation of the Falls Efficacy Scale-International (FES-I). Age Ageing. 2005; 34(6):614-9. DOI: 10.1093/ageing/afi196. View

5.
Labriffe M, Annweiler C, Amirova L, Gauquelin-Koch G, Ter Minassian A, Leiber L . Brain Activity during Mental Imagery of Gait Versus Gait-Like Plantar Stimulation: A Novel Combined Functional MRI Paradigm to Better Understand Cerebral Gait Control. Front Hum Neurosci. 2017; 11:106. PMC: 5337483. DOI: 10.3389/fnhum.2017.00106. View