6.
Zhu H, Traver D, Davidson A, DiBiase A, Thisse C, Thisse B
. Regulation of the lmo2 promoter during hematopoietic and vascular development in zebrafish. Dev Biol. 2005; 281(2):256-69.
DOI: 10.1016/j.ydbio.2005.01.034.
View
7.
Iqbal M, Victory V, Astuti A, Febrianora M, Karwiky G, Achmad C
. Cardiotoxicity by Anthracycline Regimen Chemotherapy Prolonged T Peak to T End Interval. Cardiol Res. 2020; 11(5):305-310.
PMC: 7430896.
DOI: 10.14740/cr1052.
View
8.
Tong W, Perkins R, Xing L, Welsh W, Sheehan D
. QSAR models for binding of estrogenic compounds to estrogen receptor alpha and beta subtypes. Endocrinology. 1997; 138(9):4022-5.
DOI: 10.1210/endo.138.9.5487.
View
9.
Neves A, Devesa M, Martinez F, Garcia-Martinez S, Rodriguez I, Polyzos N
. What is the clinical impact of the endometrial receptivity array in PGT-A and oocyte donation cycles?. J Assist Reprod Genet. 2019; 36(9):1901-1908.
PMC: 6730969.
DOI: 10.1007/s10815-019-01535-5.
View
10.
Rogers D, Hahn M
. Extended-connectivity fingerprints. J Chem Inf Model. 2010; 50(5):742-54.
DOI: 10.1021/ci100050t.
View
11.
Chakravarti S, Alla S
. Descriptor Free QSAR Modeling Using Deep Learning With Long Short-Term Memory Neural Networks. Front Artif Intell. 2021; 2:17.
PMC: 7861338.
DOI: 10.3389/frai.2019.00017.
View
12.
Gonczarek A, Tomczak J, Zareba S, Kaczmar J, Dabrowski P, Walczak M
. Interaction prediction in structure-based virtual screening using deep learning. Comput Biol Med. 2017; 100:253-258.
DOI: 10.1016/j.compbiomed.2017.09.007.
View
13.
Yu T, Huang T, Yu L, Nantasenamat C, Anuwongcharoen N, Piacham T
. Exploring the Chemical Space of CYP17A1 Inhibitors Using Cheminformatics and Machine Learning. Molecules. 2023; 28(4).
PMC: 9966999.
DOI: 10.3390/molecules28041679.
View
14.
Gaulton A, Hersey A, Nowotka M, Bento A, Chambers J, Mendez D
. The ChEMBL database in 2017. Nucleic Acids Res. 2016; 45(D1):D945-D954.
PMC: 5210557.
DOI: 10.1093/nar/gkw1074.
View
15.
Kuhn B, Mohr P, Stahl M
. Intramolecular hydrogen bonding in medicinal chemistry. J Med Chem. 2010; 53(6):2601-11.
DOI: 10.1021/jm100087s.
View
16.
Cherkasov A, Muratov E, Fourches D, Varnek A, Baskin I, Cronin M
. QSAR modeling: where have you been? Where are you going to?. J Med Chem. 2013; 57(12):4977-5010.
PMC: 4074254.
DOI: 10.1021/jm4004285.
View
17.
Suvannang N, Preeyanon L, Malik A, Schaduangrat N, Shoombuatong W, Worachartcheewan A
. Probing the origin of estrogen receptor alpha inhibition large-scale QSAR study. RSC Adv. 2022; 8(21):11344-11356.
PMC: 9079045.
DOI: 10.1039/c7ra10979b.
View
18.
Cotterill J, Palazzolo L, Ridgway C, Price N, Rorije E, Moretto A
. Predicting estrogen receptor binding of chemicals using a suite of in silico methods - Complementary approaches of (Q)SAR, molecular docking and molecular dynamics. Toxicol Appl Pharmacol. 2019; 378:114630.
DOI: 10.1016/j.taap.2019.114630.
View
19.
Ciallella H, Russo D, Aleksunes L, Grimm F, Zhu H
. Predictive modeling of estrogen receptor agonism, antagonism, and binding activities using machine- and deep-learning approaches. Lab Invest. 2020; 101(4):490-502.
PMC: 7873171.
DOI: 10.1038/s41374-020-00477-2.
View
20.
Feinberg E, Sur D, Wu Z, Husic B, Mai H, Li Y
. PotentialNet for Molecular Property Prediction. ACS Cent Sci. 2018; 4(11):1520-1530.
PMC: 6276035.
DOI: 10.1021/acscentsci.8b00507.
View