» Articles » PMID: 37570514

Thermal Conductivity of 3C/4H-SiC Nanowires by Molecular Dynamics Simulation

Overview
Date 2023 Aug 12
PMID 37570514
Authors
Affiliations
Soon will be listed here.
Abstract

Silicon carbide (SiC) is a promising material for thermoelectric power generation. The characterization of thermal transport properties is essential to understanding their applications in thermoelectric devices. The existence of stacking faults, which originate from the "wrong" stacking sequences of Si-C bilayers, is a general feature of SiC. However, the effects of stacking faults on the thermal properties of SiC are not well understood. In this study, we evaluated the accuracy of Tersoff, MEAM, and GW potentials in describing the thermal transport of SiC. Additionally, the thermal conductivity of 3C/4H-SiC nanowires was investigated using non-equilibrium molecular dynamics simulations (NEMD). Our results show that thermal conductivity exhibits an increase and then saturation as the total lengths of the 3C/4H-SiC nanowires vary from 23.9 nm to 95.6 nm, showing the size effect of molecular dynamics simulations of the thermal conductivity. There is a minimum thermal conductivity, as a function of uniform period length, of the 3C/4H-SiC nanowires. However, the thermal conductivities of nanowires weakly depend on the gradient period lengths and the ratio of 3C/4H. Additionally, the thermal conductivity of 3C/4H-SiC nanowires decreases continuously from compressive strain to tensile strain. The reduction in thermal conductivity suggests that 3C/4H-SiC nanowires have potential applications in advanced thermoelectric devices. Our study provides insights into the thermal transport properties of SiC nanowires and can guide the development of SiC-based thermoelectric materials.

Citing Articles

Comparison and Assessment of Different Interatomic Potentials for Simulation of Silicon Carbide.

Yu J, Dai X, Li J, Luo A, Ouyang Y, Zhou Y Materials (Basel). 2024; 17(1).

PMID: 38204006 PMC: 10779864. DOI: 10.3390/ma17010150.

References
1.
Kim H, Kim S, Kim S, Lee N, Shin H, Lee C . Relation between work function and structural properties of triangular defects in 4H-SiC epitaxial layer: Kelvin probe force microscopic and spectroscopic analyses. Nanoscale. 2020; 12(15):8216-8229. DOI: 10.1039/c9nr10126h. View

2.
Choi I, Jeong H, Shin H, Kang G, Byun M, Kim H . Laser-induced phase separation of silicon carbide. Nat Commun. 2016; 7:13562. PMC: 5141366. DOI: 10.1038/ncomms13562. View

3.
Islam A, Islam M, Ferdous N, Park J, Bhuiyan A, Hashimoto A . Anomalous temperature dependent thermal conductivity of two-dimensional silicon carbide. Nanotechnology. 2019; 30(44):445707. DOI: 10.1088/1361-6528/ab3697. View

4.
Yan X, Liu C, Gadre C, Gu L, Aoki T, Lovejoy T . Single-defect phonons imaged by electron microscopy. Nature. 2021; 589(7840):65-69. DOI: 10.1038/s41586-020-03049-y. View

5.
Shi L, Ma X, Li M, Zhong Y, Yang L, Yin W . Molecular dynamics simulation of phonon thermal transport in nanotwinned diamond with a new optimized Tersoff potential. Phys Chem Chem Phys. 2021; 23(14):8336-8343. DOI: 10.1039/d1cp00399b. View