6.
Liu C, Lin H, Dong Y, Li B
. Increase of P and Cd bioavailability in the rhizosphere by endophytes promoted phytoremediation efficiency of Phytolacca acinosa. J Hazard Mater. 2022; 431:128546.
DOI: 10.1016/j.jhazmat.2022.128546.
View
7.
Hassan S
. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of L. J Adv Res. 2017; 8(6):687-695.
PMC: 5607146.
DOI: 10.1016/j.jare.2017.09.001.
View
8.
Liu C, Lin H, Li B, Dong Y, Gueret Yadiberet Menzembere E
. Endophyte Pseudomonas putida enhanced Trifolium repens L. growth and heavy metal uptake: A promising in-situ non-soil cover phytoremediation method of nonferrous metallic tailing. Chemosphere. 2022; 272:129816.
DOI: 10.1016/j.chemosphere.2021.129816.
View
9.
Rajkumar M, Ae N, Freitas H
. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere. 2009; 77(2):153-60.
DOI: 10.1016/j.chemosphere.2009.06.047.
View
10.
Zhang Z, Li Z, Wang W, Jiang Z, Guo L, Wang X
. Modulation of nitrate-induced phosphate response by the MYB transcription factor RLI1/HINGE1 in the nucleus. Mol Plant. 2020; 14(3):517-529.
DOI: 10.1016/j.molp.2020.12.005.
View
11.
Heuer S, Gaxiola R, Schilling R, Herrera-Estrella L, Lopez-Arredondo D, Wissuwa M
. Improving phosphorus use efficiency: a complex trait with emerging opportunities. Plant J. 2016; 90(5):868-885.
DOI: 10.1111/tpj.13423.
View
12.
Shi J, Zhao B, Zheng S, Zhang X, Wang X, Dong W
. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell. 2021; 184(22):5527-5540.e18.
DOI: 10.1016/j.cell.2021.09.030.
View
13.
Sun X, Wang N, Li P, Jiang Z, Liu X, Wang M
. Endophytic fungus Falciphora oryzae promotes lateral root growth by producing indole derivatives after sensing plant signals. Plant Cell Environ. 2019; 43(2):358-373.
DOI: 10.1111/pce.13667.
View
14.
Fochi V, Chitarra W, Kohler A, Voyron S, Singan V, Lindquist E
. Fungal and plant gene expression in the Tulasnella calospora-Serapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. New Phytol. 2016; 213(1):365-379.
DOI: 10.1111/nph.14279.
View
15.
Puga M, Rojas-Triana M, de Lorenzo L, Leyva A, Rubio V, Paz-Ares J
. Novel signals in the regulation of Pi starvation responses in plants: facts and promises. Curr Opin Plant Biol. 2017; 39:40-49.
DOI: 10.1016/j.pbi.2017.05.007.
View
16.
Zhu J, Lynch J
. The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays) seedlings. Funct Plant Biol. 2020; 31(10):949-958.
DOI: 10.1071/FP04046.
View
17.
Guether M, Balestrini R, Hannah M, He J, Udvardi M, Bonfante P
. Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol. 2009; 182(1):200-212.
DOI: 10.1111/j.1469-8137.2008.02725.x.
View
18.
Wang W, Wan X, Liu J, Wang J, Zhu H, Chen C
. Two New Terpenoids from . Mar Drugs. 2018; 16(5).
PMC: 5983281.
DOI: 10.3390/md16050150.
View
19.
Serrano M, Kanehara K, Torres M, Yamada K, Tintor N, Kombrink E
. Repression of sucrose/ultraviolet B light-induced flavonoid accumulation in microbe-associated molecular pattern-triggered immunity in Arabidopsis. Plant Physiol. 2011; 158(1):408-22.
PMC: 3252079.
DOI: 10.1104/pp.111.183459.
View
20.
Baker A, Ceasar S, Palmer A, Paterson J, Qi W, Muench S
. Replace, reuse, recycle: improving the sustainable use of phosphorus by plants. J Exp Bot. 2015; 66(12):3523-40.
DOI: 10.1093/jxb/erv210.
View