Adaptive Deep Brain Stimulation for Sleep Stage Targeting in Parkinson's Disease
Overview
Affiliations
Background: Sleep dysfunction is disabling in people with Parkinson's disease and is linked to worse motor and non-motor outcomes. Sleep-specific adaptive Deep Brain Stimulation has the potential to target pathophysiologies of sleep.
Objective: Develop an adaptive Deep Brain Stimulation algorithm that modulates stimulation parameters in response to intracranially classified sleep stages.
Methods: We performed at-home, multi-night intracranial electrocorticography and polysomnogram recordings to train personalized linear classifiers for discriminating the N3 NREM sleep stage. Classifiers were embedded into investigational Deep Brain Stimulators for N3 specific adaptive DBS.
Results: We report high specificity of embedded, autonomous, intracranial electrocorticography N3 sleep stage classification across two participants and provide proof-of-principle of successful sleep stage specific adaptive Deep Brain Stimulation.
Conclusion: Multi-night cortico-basal recordings and sleep specific adaptive Deep Brain Stimulation provide an experimental framework to investigate sleep pathophysiology and mechanistic interactions with stimulation, towards the development of therapeutic neurostimulation paradigms directly targeting sleep dysfunction.
Martinez-Nunez A, Rozell C, Little S, Tan H, Schmidt S, Grill W Front Hum Neurosci. 2025; 19:1544994.
PMID: 40070487 PMC: 11893992. DOI: 10.3389/fnhum.2025.1544994.
Subthalamic γ Oscillation Underlying Rapid Eye Movement Sleep Abnormality in Parkinsonian Patients.
Guan L, Yu H, Chen Y, Gong C, Hao H, Guo Y Mov Disord. 2024; .
PMID: 39707598 PMC: 7617463. DOI: 10.1002/mds.30091.
Coventry B, Bartlett E STAR Protoc. 2024; 6(1):103496.
PMID: 39705145 PMC: 11728987. DOI: 10.1016/j.xpro.2024.103496.
Herz D, Blech J, Winter Y, Gonzalez-Escamilla G, Groppa S Mov Disord. 2024; 40(2):285-291.
PMID: 39569914 PMC: 11832815. DOI: 10.1002/mds.30064.
Stimulation-Evoked Resonant Neural Activity in the Subthalamic Nucleus Is Modulated by Sleep.
Wiest C, Simpson T, Pogosyan A, Hasegawa H, He S, Plazas F Mov Disord. 2024; 40(2):351-356.
PMID: 39560163 PMC: 11832792. DOI: 10.1002/mds.30063.