6.
Wang Z, Cao Y
. Adoptive Cell Therapy Targeting Neoantigens: A Frontier for Cancer Research. Front Immunol. 2020; 11:176.
PMC: 7066210.
DOI: 10.3389/fimmu.2020.00176.
View
7.
Saxena M, van der Burg S, Melief C, Bhardwaj N
. Therapeutic cancer vaccines. Nat Rev Cancer. 2021; 21(6):360-378.
DOI: 10.1038/s41568-021-00346-0.
View
8.
Singh A, McGuirk J
. CAR T cells: continuation in a revolution of immunotherapy. Lancet Oncol. 2020; 21(3):e168-e178.
DOI: 10.1016/S1470-2045(19)30823-X.
View
9.
Postow M, Callahan M, Wolchok J
. Immune Checkpoint Blockade in Cancer Therapy. J Clin Oncol. 2015; 33(17):1974-82.
PMC: 4980573.
DOI: 10.1200/JCO.2014.59.4358.
View
10.
Bagchi S, Yuan R, Engleman E
. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annu Rev Pathol. 2020; 16:223-249.
DOI: 10.1146/annurev-pathol-042020-042741.
View
11.
Petrosky E, Bocchini Jr J, Hariri S, Chesson H, Curtis C, Saraiya M
. Use of 9-valent human papillomavirus (HPV) vaccine: updated HPV vaccination recommendations of the advisory committee on immunization practices. MMWR Morb Mortal Wkly Rep. 2015; 64(11):300-4.
PMC: 4584883.
View
12.
Paz-Ares L, Ciuleanu T, Cobo M, Schenker M, Zurawski B, Menezes J
. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021; 22(2):198-211.
DOI: 10.1016/S1470-2045(20)30641-0.
View
13.
Hellmann M, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim S, Carcereny Costa E
. Nivolumab plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer. N Engl J Med. 2019; 381(21):2020-2031.
DOI: 10.1056/NEJMoa1910231.
View
14.
Hodi F, Chiarion-Sileni V, Gonzalez R, Grob J, Rutkowski P, Cowey C
. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018; 19(11):1480-1492.
DOI: 10.1016/S1470-2045(18)30700-9.
View
15.
Hou A, Chen L, Chen Y
. Navigating CAR-T cells through the solid-tumour microenvironment. Nat Rev Drug Discov. 2021; 20(7):531-550.
DOI: 10.1038/s41573-021-00189-2.
View
16.
Goldberg M
. Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer. 2019; 19(10):587-602.
DOI: 10.1038/s41568-019-0186-9.
View
17.
Irvine D, Dane E
. Enhancing cancer immunotherapy with nanomedicine. Nat Rev Immunol. 2020; 20(5):321-334.
PMC: 7536618.
DOI: 10.1038/s41577-019-0269-6.
View
18.
Matsumura Y, Maeda H
. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986; 46(12 Pt 1):6387-92.
View
19.
Iyer A, Khaled G, Fang J, Maeda H
. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006; 11(17-18):812-8.
DOI: 10.1016/j.drudis.2006.07.005.
View
20.
Wang J, Zhang B, Sun J, Wang Y, Wang H
. Nanomedicine-Enabled Modulation of Tumor Hypoxic Microenvironment for Enhanced Cancer Therapy. Adv Ther (Weinh). 2021; 3(1).
PMC: 8281934.
DOI: 10.1002/adtp.201900083.
View