» Articles » PMID: 37553376

Cholinergic-like Neurons and Cerebral Spheroids Bearing the PSEN1 P.Ile416Thr Variant Mirror Alzheimer's Disease Neuropathology

Overview
Journal Sci Rep
Specialty Science
Date 2023 Aug 8
PMID 37553376
Authors
Affiliations
Soon will be listed here.
Abstract

Familial Alzheimer's disease (FAD) is a complex neurodegenerative disorder for which there are no therapeutics to date. Several mutations in presenilin 1 (PSEN 1), which is the catalytic component of γ-secretase complex, are causal of FAD. Recently, the p.Ile416Thr (I416T) PSEN 1 mutation has been reported in large kindred in Colombia. However, cell and molecular information from I416T mutation is scarce. Here, we demonstrate that menstrual stromal cells (MenSCs)-derived planar (2D) PSEN 1 I416T cholinergic-like cells (ChLNS) and (3D) cerebral spheroids (CSs) reproduce the typical neuropathological markers of FAD in 4 post-transdifferentiating or 11 days of transdifferentiating, respectively. The models produce intracellular aggregation of APPβ fragments (at day 4 and 11) and phosphorylated protein TAU at residue Ser/Thr (at day 11) suggesting that iAPPβ fragments precede p-TAU. Mutant ChLNs and CSs displayed DJ-1 Cys-SO (sulfonic acid), failure of mitochondria membrane potential (ΔΨ), and activation of transcription factor c-JUN and p53, expression of pro-apoptotic protein PUMA, and activation of executer protein caspase 3 (CASP3), all markers of cell death by apoptosis. Moreover, we found that both mutant ChLNs and CSs produced high amounts of extracellular eAβ. The I416T ChLNs and CSs were irresponsive to acetylcholine induced Ca influx compared to WT. The I416T PSEN 1 mutation might work as dominant-negative PSEN1 mutation. These findings might help to understanding the recurring failures of clinical trials of anti-eAβ, and support the view that FAD is triggered by the accumulation of other intracellular AβPP metabolites, rather than eAβ42.

Citing Articles

Altering heparan sulfate suppresses cell abnormalities and neuron loss in model of Alzheimer Disease.

Schultheis N, Connell A, Kapral A, Becker R, Mueller R, Shah S iScience. 2024; 27(7):110256.

PMID: 39109174 PMC: 11302002. DOI: 10.1016/j.isci.2024.110256.


Combination of Tramiprosate, Curcumin, and SP600125 Reduces the Neuropathological Phenotype in Familial Alzheimer Disease PSEN1 I416T Cholinergic-like Neurons.

Gomez-Sequeda N, Jimenez-Del-Rio M, Velez-Pardo C Int J Mol Sci. 2024; 25(9).

PMID: 38732141 PMC: 11084854. DOI: 10.3390/ijms25094925.

References
1.
Viswanathan S, Shi Y, Galipeau J, Krampera M, LeBlanc K, Martin I . Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy. 2019; 21(10):1019-1024. DOI: 10.1016/j.jcyt.2019.08.002. View

2.
Norstrom E . Metabolic processing of the amyloid precursor protein -- new pieces of the Alzheimer's puzzle. Discov Med. 2017; 23(127):269-276. View

3.
Kaminsky Y, Tikhonova L, Kosenko E . Critical analysis of Alzheimer's amyloid-beta toxicity to mitochondria. Front Biosci (Landmark Ed). 2015; 20(1):173-97. DOI: 10.2741/4304. View

4.
Frederiksen H, Holst B, Mau-Holzmann U, Freude K, Schmid B . Generation of two isogenic iPSC lines with either a heterozygous or a homozygous E280A mutation in the PSEN1 gene. Stem Cell Res. 2019; 35:101403. DOI: 10.1016/j.scr.2019.101403. View

5.
Sannerud R, Esselens C, Ejsmont P, Mattera R, Rochin L, Tharkeshwar A . Restricted Location of PSEN2/γ-Secretase Determines Substrate Specificity and Generates an Intracellular Aβ Pool. Cell. 2016; 166(1):193-208. PMC: 7439524. DOI: 10.1016/j.cell.2016.05.020. View