» Articles » PMID: 37552598

Demonstration of the Nonlocal Josephson Effect in Andreev Molecules

Abstract

We perform switching current measurements of planar Josephson junctions (JJs) coupled by a common superconducting electrode with independent control over the two superconducting phase differences. We observe an anomalous phase shift in the current-phase relation of a JJ as a function of gate voltage or phase difference in the second JJ. This demonstrates the nonlocal Josephson effect, and the implementation of a φ-junction which is tunable both electrostatically and magnetically. The anomalous phase shift is larger for shorter distances between the JJs and vanishes for distances much longer than the superconducting coherence length. Results are consistent with the hybridization of Andreev bound states, leading to the formation of an Andreev molecule. Our devices constitute a realization of a tunable superconducting phase source and could enable new coupling schemes for hybrid quantum devices.

Citing Articles

Flux-Tunable Josephson Diode Effect in a Hybrid Four-Terminal Josephson Junction.

Coraiola M, Svetogorov A, Haxell D, Sabonis D, Hinderling M, Ten Kate S ACS Nano. 2024; 18(12):9221-9231.

PMID: 38488287 PMC: 10976958. DOI: 10.1021/acsnano.4c01642.


Phase-dependent Andreev molecules and superconducting gap closing in coherently-coupled Josephson junctions.

Matsuo S, Imoto T, Yokoyama T, Sato Y, Lindemann T, Gronin S Nat Commun. 2023; 14(1):8271.

PMID: 38092786 PMC: 10719386. DOI: 10.1038/s41467-023-44111-3.


Phase engineering of anomalous Josephson effect derived from Andreev molecules.

Matsuo S, Imoto T, Yokoyama T, Sato Y, Lindemann T, Gronin S Sci Adv. 2023; 9(50):eadj3698.

PMID: 38091387 PMC: 10848717. DOI: 10.1126/sciadv.adj3698.


Zeeman- and Orbital-Driven Phase Shifts in Planar Josephson Junctions.

Haxell D, Coraiola M, Sabonis D, Hinderling M, Ten Kate S, Cheah E ACS Nano. 2023; 17(18):18139-18147.

PMID: 37694539 PMC: 10540266. DOI: 10.1021/acsnano.3c04957.

References
1.
Larsen T, Petersson K, Kuemmeth F, Jespersen T, Krogstrup P, Nygard J . Semiconductor-Nanowire-Based Superconducting Qubit. Phys Rev Lett. 2015; 115(12):127001. DOI: 10.1103/PhysRevLett.115.127001. View

2.
Turini B, Salimian S, Carrega M, Iorio A, Strambini E, Giazotto F . Josephson Diode Effect in High-Mobility InSb Nanoflags. Nano Lett. 2022; 22(21):8502-8508. PMC: 9650771. DOI: 10.1021/acs.nanolett.2c02899. View

3.
Chang W, Albrecht S, Jespersen T, Kuemmeth F, Krogstrup P, Nygard J . Hard gap in epitaxial semiconductor-superconductor nanowires. Nat Nanotechnol. 2015; 10(3):232-6. DOI: 10.1038/nnano.2014.306. View

4.
Butseraen G, Ranadive A, Aparicio N, Amin K, Juyal A, Esposito M . A gate-tunable graphene Josephson parametric amplifier. Nat Nanotechnol. 2022; 17(11):1153-1158. DOI: 10.1038/s41565-022-01235-9. View

5.
Doh Y, van Dam J, Roest A, Bakkers E, Kouwenhoven L, De Franceschi S . Tunable supercurrent through semiconductor nanowires. Science. 2005; 309(5732):272-5. DOI: 10.1126/science.1113523. View