» Articles » PMID: 37549063

Enhancing Cryo-EM Maps with 3D Deep Generative Networks for Assisting Protein Structure Modeling

Overview
Journal Bioinformatics
Specialty Biology
Date 2023 Aug 7
PMID 37549063
Authors
Affiliations
Soon will be listed here.
Abstract

Motivation: The tertiary structures of an increasing number of biological macromolecules have been determined using cryo-electron microscopy (cryo-EM). However, there are still many cases where the resolution is not high enough to model the molecular structures with standard computational tools. If the resolution obtained is near the empirical borderline (3-4.5 Å), improvement in the map quality facilitates structure modeling.

Results: We report EM-GAN, a novel approach that modifies an input cryo-EM map to assist protein structure modeling. The method uses a 3D generative adversarial network (GAN) that has been trained on high- and low-resolution density maps to learn the density patterns, and modifies the input map to enhance its suitability for modeling. The method was tested extensively on a dataset of 65 EM maps in the resolution range of 3-6 Å and showed substantial improvements in structure modeling using popular protein structure modeling tools.

Availability And Implementation: https://github.com/kiharalab/EM-GAN, Google Colab: https://tinyurl.com/3ccxpttx.

Citing Articles

AI-based methods for biomolecular structure modeling for Cryo-EM.

Farheen F, Terashi G, Zhu H, Kihara D Curr Opin Struct Biol. 2025; 90:102989.

PMID: 39864242 PMC: 11793015. DOI: 10.1016/j.sbi.2025.102989.


Protein Secondary Structure and DNA/RNA Detection for Cryo-EM and Cryo-ET Using Emap2sec and Emap2sec.

Baghirov J, Zhu H, Wang X, Kihara D Methods Mol Biol. 2024; 2867:105-120.

PMID: 39576577 DOI: 10.1007/978-1-0716-4196-5_6.


Super-resolution microscopy to study membrane nanodomains and transport mechanisms in the plasma membrane.

Zulueta Diaz Y, Arnspang E Front Mol Biosci. 2024; 11:1455153.

PMID: 39290992 PMC: 11405310. DOI: 10.3389/fmolb.2024.1455153.


The small CRL4 ubiquitin ligase component DDA1 regulates transcription-coupled repair dynamics.

Llerena Schiffmacher D, Lee S, Kliza K, Theil A, Akita M, Helfricht A Nat Commun. 2024; 15(1):6374.

PMID: 39075067 PMC: 11286758. DOI: 10.1038/s41467-024-50584-7.


Machine learning approaches to cryoEM density modification differentially affect biomacromolecule and ligand density quality.

Berkeley R, Cook B, Herzik Jr M Front Mol Biosci. 2024; 11:1404885.

PMID: 38698773 PMC: 11063317. DOI: 10.3389/fmolb.2024.1404885.


References
1.
Terashi G, Kihara D . De novo main-chain modeling for EM maps using MAINMAST. Nat Commun. 2018; 9(1):1618. PMC: 5915429. DOI: 10.1038/s41467-018-04053-7. View

2.
Rotkiewicz P, Skolnick J . Fast procedure for reconstruction of full-atom protein models from reduced representations. J Comput Chem. 2008; 29(9):1460-5. PMC: 2692024. DOI: 10.1002/jcc.20906. View

3.
Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E . UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13):1605-12. DOI: 10.1002/jcc.20084. View

4.
Terwilliger T, Adams P, Afonine P, Sobolev O . A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps. Nat Methods. 2018; 15(11):905-908. PMC: 6214191. DOI: 10.1038/s41592-018-0173-1. View

5.
Tickle I . Statistical quality indicators for electron-density maps. Acta Crystallogr D Biol Crystallogr. 2012; 68(Pt 4):454-67. PMC: 3322605. DOI: 10.1107/S0907444911035918. View