» Articles » PMID: 37531423

Metal-polyDNA Nanoparticles Reconstruct Osteoporotic Microenvironment for Enhanced Osteoporosis Treatment

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2023 Aug 2
PMID 37531423
Authors
Affiliations
Soon will be listed here.
Abstract

Current clinical approaches to osteoporosis primarily target osteoclast biology, overlooking the synergistic role of bone cells, immune cells, cytokines, and inorganic components in creating an abnormal osteoporotic microenvironment. Here, metal-polyDNA nanoparticles (Ca-polyCpG MDNs) composed of Ca and ultralong single-stranded CpG sequences were developed to reconstruct the osteoporotic microenvironment and suppress osteoporosis. Ca-polyCpG MDNs can neutralize osteoclast-secreted hydrogen ions, provide calcium repletion, promote remineralization, and repair bone defects. Besides, the immune-adjuvant polyCpG in MDNs could induce the secretion of osteoclastogenesis inhibitor interleukin-12 and reduce the expression of osteoclast function effector protein to inhibit osteoclast differentiation, further reducing osteoclast-mediated bone resorption. PPi generated during the rolling circle amplification reaction acts as bisphosphonate analog and enhances bone targeting of Ca-polyCpG MDNs. In ovariectomized mouse and rabbit models, Ca-polyCpG MDNs prevented bone resorption and promoted bone repair by restoring the osteoporotic microenvironment, providing valuable insights into osteoporosis therapy.

Citing Articles

Biomaterial Cues for Regulation of Osteoclast Differentiation and Function in Bone Regeneration.

Shariati K, Bedar M, Huang K, Moghadam S, Mirzaie S, LaGuardia J Adv Ther (Weinh). 2025; 8(1.

PMID: 39867107 PMC: 11756815. DOI: 10.1002/adtp.202400296.


Regulation of Bone Remodeling by Metal-Phenolic Networks for the Treatment of Systemic Osteoporosis.

Chen X, Wu W, Zhu W, Zhou J, Chen J, Lin Z ACS Appl Mater Interfaces. 2025; 17(4):5995-6008.

PMID: 39818714 PMC: 11788982. DOI: 10.1021/acsami.4c18829.


An antioxidant nanozyme for targeted cardiac fibrosis therapy post myocardial infarction.

Gu Z, Liu X, Qi Z, Fang Z, Jiang Y, Huang Y J Nanobiotechnology. 2024; 22(1):760.

PMID: 39696342 PMC: 11656654. DOI: 10.1186/s12951-024-03047-6.


An intelligent poly aptamer-encoded DNA nanoclew for tumor site activated mitochondria-targeted photodynamic therapy and MR imaging.

Chen M, Xu H, Chang P, Li X, Liu S, Xu L Mater Today Bio. 2024; 29:101318.

PMID: 39534680 PMC: 11554627. DOI: 10.1016/j.mtbio.2024.101318.


Targeting glutamine synthetase with AS1411-modified exosome-liposome hybrid nanoparticles for inhibition of choroidal neovascularization.

Zhang M, Lu X, Luo L, Dou J, Zhang J, Li G J Nanobiotechnology. 2024; 22(1):703.

PMID: 39533430 PMC: 11559141. DOI: 10.1186/s12951-024-02943-1.


References
1.
Boyle W, Simonet W, Lacey D . Osteoclast differentiation and activation. Nature. 2003; 423(6937):337-42. DOI: 10.1038/nature01658. View

2.
Tuckermann J, Adams R . The endothelium-bone axis in development, homeostasis and bone and joint disease. Nat Rev Rheumatol. 2021; 17(10):608-620. PMC: 7612477. DOI: 10.1038/s41584-021-00682-3. View

3.
Khosla S, Hofbauer L . Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endocrinol. 2017; 5(11):898-907. PMC: 5798872. DOI: 10.1016/S2213-8587(17)30188-2. View

4.
Mora-Raimundo P, Lozano D, Manzano M, Vallet-Regi M . Nanoparticles to Knockdown Osteoporosis-Related Gene and Promote Osteogenic Marker Expression for Osteoporosis Treatment. ACS Nano. 2019; 13(5):5451-5464. PMC: 6588271. DOI: 10.1021/acsnano.9b00241. View

5.
Schinke T, Schilling A, Baranowsky A, Seitz S, Marshall R, Linn T . Impaired gastric acidification negatively affects calcium homeostasis and bone mass. Nat Med. 2009; 15(6):674-81. DOI: 10.1038/nm.1963. View