» Articles » PMID: 37522004

Development and Validation of a Prediction Model for Mechanical Ventilation Based on Comorbidities in Hospitalized Patients with COVID-19

Overview
Specialty Public Health
Date 2023 Jul 31
PMID 37522004
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Timely recognition of respiratory failure and the need for mechanical ventilation is crucial in managing patients with coronavirus disease 2019 (COVID-19) and reducing hospital mortality rate. A risk stratification tool could assist to avoid clinical deterioration of patients with COVID-19 and optimize allocation of scarce resources. Therefore, we aimed to develop a prediction model for early identification of patients with COVID-19 who may require mechanical ventilation.

Methods: We included patients with COVID-19 hospitalized in United States. Demographic and clinical data were extracted from the records of the Healthcare Cost and Utilization Project State Inpatient Database in 2020. Model construction involved the use of the least absolute shrinkage and selection operator and multivariable logistic regression. The model's performance was evaluated based on discrimination, calibration, and clinical utility.

Results: The training set comprised 73,957 patients (5,971 requiring mechanical ventilation), whereas the validation set included 10,428 (887 requiring mechanical ventilation). The prediction model incorporating age, sex, and 11 other comorbidities (deficiency anemias, congestive heart failure, coagulopathy, dementia, diabetes with chronic complications, complicated hypertension, neurological disorders unaffecting movement, obesity, pulmonary circulation disease, severe renal failure, and weight loss) demonstrated moderate discrimination (area under the curve, 0.715; 95% confidence interval, 0.709-0.722), good calibration (Brier score = 0.070, slope = 1, intercept = 0) and a clinical net benefit with a threshold probability ranged from 2 to 34% in the training set. Similar model's performances were observed in the validation set.

Conclusion: A robust prognostic model utilizing readily available predictors at hospital admission was developed for the early identification of patients with COVID-19 who may require mechanical ventilation. Application of this model could support clinical decision-making to optimize patient management and resource allocation.

References
1.
Shoukat A, Wells C, Langley J, Singer B, Galvani A, Moghadas S . Projecting demand for critical care beds during COVID-19 outbreaks in Canada. CMAJ. 2020; 192(19):E489-E496. PMC: 7234264. DOI: 10.1503/cmaj.200457. View

2.
Douville N, Douville C, Mentz G, Mathis M, Pancaro C, Tremper K . Clinically applicable approach for predicting mechanical ventilation in patients with COVID-19. Br J Anaesth. 2021; 126(3):578-589. PMC: 7833820. DOI: 10.1016/j.bja.2020.11.034. View

3.
Barnato A, Birkmeyer J, Skinner J, OMalley A, Birkmeyer N . Treatment intensity and mortality among COVID-19 patients with dementia: A retrospective observational study. J Am Geriatr Soc. 2021; 70(1):40-48. PMC: 8742761. DOI: 10.1111/jgs.17463. View

4.
Wong C, Au I, Lau K, Lau E, Cowling B, Leung G . Real-world effectiveness of early molnupiravir or nirmatrelvir-ritonavir in hospitalised patients with COVID-19 without supplemental oxygen requirement on admission during Hong Kong's omicron BA.2 wave: a retrospective cohort study. Lancet Infect Dis. 2022; 22(12):1681-1693. PMC: 9401976. DOI: 10.1016/S1473-3099(22)00507-2. View

5.
Goyal P, Choi J, Pinheiro L, Schenck E, Chen R, Jabri A . Clinical Characteristics of Covid-19 in New York City. N Engl J Med. 2020; 382(24):2372-2374. PMC: 7182018. DOI: 10.1056/NEJMc2010419. View