» Articles » PMID: 37521165

Elastic Integrative Analysis of Randomised Trial and Real-world Data for Treatment Heterogeneity Estimation

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

We propose a test-based elastic integrative analysis of the randomised trial and real-world data to estimate treatment effect heterogeneity with a vector of known effect modifiers. When the real-world data are not subject to bias, our approach combines the trial and real-world data for efficient estimation. Utilising the trial design, we construct a test to decide whether or not to use real-world data. We characterise the asymptotic distribution of the test-based estimator under local alternatives. We provide a data-adaptive procedure to select the test threshold that promises the smallest mean square error and an elastic confidence interval with a good finite-sample coverage property.

Citing Articles

Assessing racial disparities in healthcare expenditure using generalized propensity score weighting.

Liu J, Liu Y, Zhou Y, Matsouaka R BMC Med Res Methodol. 2025; 25(1):64.

PMID: 40055609 PMC: 11887195. DOI: 10.1186/s12874-025-02508-2.


When does adjusting covariate under randomization help? A comparative study on current practices.

Gao Y, Liu Y, Matsouaka R BMC Med Res Methodol. 2024; 24(1):250.

PMID: 39462370 PMC: 11514882. DOI: 10.1186/s12874-024-02375-3.


Efficacy and safety of Shen Gui capsules for chronic heart failure: a systematic review and meta-analysis.

Yan J, Zhang C, Wang Y, Yan X, Jin L Front Pharmacol. 2024; 15:1347828.

PMID: 38659585 PMC: 11039789. DOI: 10.3389/fphar.2024.1347828.


Methods for Integrating Trials and Non-experimental Data to Examine Treatment Effect Heterogeneity.

Brantner C, Chang T, Nguyen T, Hong H, Stefano L, Stuart E Stat Sci. 2024; 38(4):640-654.

PMID: 38638306 PMC: 11025720. DOI: 10.1214/23-sts890.


Comparison of methods that combine multiple randomized trials to estimate heterogeneous treatment effects.

Brantner C, Nguyen T, Tang T, Zhao C, Hong H, Stuart E Stat Med. 2024; 43(7):1291-1314.

PMID: 38273647 PMC: 11086055. DOI: 10.1002/sim.9955.


References
1.
Buchanan A, Hudgens M, Cole S, Mollan K, Sax P, Daar E . Generalizing Evidence from Randomized Trials using Inverse Probability of Sampling Weights. J R Stat Soc Ser A Stat Soc. 2018; 181(4):1193-1209. PMC: 6289264. DOI: 10.1111/rssa.12357. View

2.
Cole S, Stuart E . Generalizing evidence from randomized clinical trials to target populations: The ACTG 320 trial. Am J Epidemiol. 2010; 172(1):107-15. PMC: 2915476. DOI: 10.1093/aje/kwq084. View

3.
Stuart E, Cole S, Bradshaw C, Leaf P . The use of propensity scores to assess the generalizability of results from randomized trials. J R Stat Soc Ser A Stat Soc. 2014; 174(2):369-386. PMC: 4051511. DOI: 10.1111/j.1467-985X.2010.00673.x. View

4.
Luedtke A, Carone M, van der Laan M . An omnibus non-parametric test of equality in distribution for unknown functions. J R Stat Soc Series B Stat Methodol. 2019; 81(1):75-99. PMC: 6476331. DOI: 10.1111/rssb.12299. View

5.
Li X, Ding P, Rubin D . Asymptotic theory of rerandomization in treatment-control experiments. Proc Natl Acad Sci U S A. 2018; 115(37):9157-9162. PMC: 6140533. DOI: 10.1073/pnas.1808191115. View