» Articles » PMID: 37520617

Fractional Order Epidemiological Model of SARS-CoV-2 Dynamism Involving Alzheimer's Disease

Overview
Date 2023 Jul 31
PMID 37520617
Authors
Affiliations
Soon will be listed here.
Abstract

In this paper, we study a Caputo-Fabrizio fractional order epidemiological model for the transmission dynamism of the severe acute respiratory syndrome coronavirus 2 pandemic and its relationship with Alzheimer's disease. Alzheimer's disease is incorporated into the model by evaluating its relevance to the quarantine strategy. We use functional techniques to demonstrate the proposed model stability under the Ulam-Hyres condition. The Adams-Bashforth method is used to determine the numerical solution for our proposed model. According to our numerical results, we notice that an increase in the quarantine parameter has minimal effect on the Alzheimer's disease compartment.

Citing Articles

Fractional-Order Epidemic Model for Measles Infection.

Akuka P, Seidu B, Okyere E, Abagna S Scientifica (Cairo). 2024; 2024:8997302.

PMID: 39421686 PMC: 11486538. DOI: 10.1155/2024/8997302.


Time delayed fractional diabetes mellitus model and consistent numerical algorithm.

Rafique M, Rehamn M, Rafiq M, Iqbal Z, Ahmed N, Alhazmi H Sci Rep. 2024; 14(1):23871.

PMID: 39396062 PMC: 11470918. DOI: 10.1038/s41598-024-74767-w.


A nonlinear fractional epidemic model for the Marburg virus transmission with public health education.

Addai E, Adeniji A, Ngungu M, Tawiah G, Marinda E, Asamoah J Sci Rep. 2023; 13(1):19292.

PMID: 37935815 PMC: 10630313. DOI: 10.1038/s41598-023-46127-7.


A computational technique for the Caputo fractal-fractional diabetes mellitus model without genetic factors.

Karaagac B, Owolabi K, Pindza E Int J Dyn Control. 2023; :1-18.

PMID: 37360279 PMC: 9975863. DOI: 10.1007/s40435-023-01131-7.


Modeling and analysis for the transmission dynamics of cotton leaf curl virus using fractional order derivatives.

Fantaye A, Birhanu Z Heliyon. 2023; 9(6):e16877.

PMID: 37332962 PMC: 10272326. DOI: 10.1016/j.heliyon.2023.e16877.


References
1.
Rajagopal K, Hasanzadeh N, Parastesh F, Hamarash I, Jafari S, Hussain I . A fractional-order model for the novel coronavirus (COVID-19) outbreak. Nonlinear Dyn. 2020; 101(1):711-718. PMC: 7314430. DOI: 10.1007/s11071-020-05757-6. View

2.
Pandey P, Gomez-Aguilar J, Kaabar M, Siri Z, Mousa A . Mathematical modeling of COVID-19 pandemic in India using Caputo-Fabrizio fractional derivative. Comput Biol Med. 2022; 145:105518. PMC: 9009075. DOI: 10.1016/j.compbiomed.2022.105518. View

3.
Ahmed M, Ahmed O, Aibao Z, Hanbin S, Siyu L, Ahmad A . Epidemic of COVID-19 in China and associated Psychological Problems. Asian J Psychiatr. 2020; 51:102092. PMC: 7194662. DOI: 10.1016/j.ajp.2020.102092. View

4.
Dewanjee S, Vallamkondu J, Kalra R, Puvvada N, Kandimalla R, Reddy P . Emerging COVID-19 Neurological Manifestations: Present Outlook and Potential Neurological Challenges in COVID-19 Pandemic. Mol Neurobiol. 2021; 58(9):4694-4715. PMC: 8224263. DOI: 10.1007/s12035-021-02450-6. View

5.
Ahmed I, Modu G, Yusuf A, Kumam P, Yusuf I . A mathematical model of Coronavirus Disease (COVID-19) containing asymptomatic and symptomatic classes. Results Phys. 2021; 21:103776. PMC: 7787076. DOI: 10.1016/j.rinp.2020.103776. View