6.
Qi Y, Xiu F, Yu G, Huang L, Li B
. Simple and rapid chemiluminescence aptasensor for Hg in contaminated samples: A new signal amplification mechanism. Biosens Bioelectron. 2016; 87:439-446.
DOI: 10.1016/j.bios.2016.08.022.
View
7.
Wu X, Chen T, Chen Y, Yang G
. Modified TiC nanosheets as peroxidase mimetics for use in colorimetric detection and immunoassays. J Mater Chem B. 2020; 8(13):2650-2659.
DOI: 10.1039/d0tb00239a.
View
8.
Alwarappan S, Nesakumar N, Sun D, Hu T, Li C
. 2D metal carbides and nitrides (MXenes) for sensors and biosensors. Biosens Bioelectron. 2022; 205:113943.
DOI: 10.1016/j.bios.2021.113943.
View
9.
Wu H, Xie R, Hao Y, Pang J, Gao H, Qu F
. Portable smartphone-integrated AuAg nanoclusters electrospun membranes for multivariate fluorescent sensing of Hg, Cu and l-histidine in water and food samples. Food Chem. 2023; 418:135961.
DOI: 10.1016/j.foodchem.2023.135961.
View
10.
Noviana E, McCord C, Clark K, Jang I, Henry C
. Electrochemical paper-based devices: sensing approaches and progress toward practical applications. Lab Chip. 2019; 20(1):9-34.
DOI: 10.1039/c9lc00903e.
View
11.
Zhang H, Wang D, Zhang D, Zhang T, Yang L, Li Z
. In Situ Microfluidic SERS Chip for Ultrasensitive Hg Sensing Based on I-Functionalized Silver Aggregates. ACS Appl Mater Interfaces. 2021; 14(1):2211-2218.
DOI: 10.1021/acsami.1c17832.
View
12.
Xing Y, Han J, Wu X, Pierce D, Zhao J
. Aggregation-based determination of mercury(II) using DNA-modified single gold nanoparticle, T-Hg(II)-T interaction, and single-particle ICP-MS. Mikrochim Acta. 2019; 187(1):56.
DOI: 10.1007/s00604-019-4057-6.
View
13.
Yan L, Chen Z, Zhang Z, Qu C, Chen L, Shen D
. Fluorescent sensing of mercury(II) based on formation of catalytic gold nanoparticles. Analyst. 2013; 138(15):4280-3.
DOI: 10.1039/c3an00725a.
View
14.
Li Y, Ding L, Guo Y, Liang Z, Cui H, Tian J
. Boosting the Photocatalytic Ability of g-CN for Hydrogen Production by TiC MXene Quantum Dots. ACS Appl Mater Interfaces. 2019; 11(44):41440-41447.
DOI: 10.1021/acsami.9b14985.
View
15.
Qin M, Li J, Song Y
. Toward High Sensitivity: Perspective on Colorimetric Photonic Crystal Sensors. Anal Chem. 2022; 94(27):9497-9507.
DOI: 10.1021/acs.analchem.2c01804.
View
16.
Panthi G, Park M
. Synthesis of metal nanoclusters and their application in Hg ions detection: A review. J Hazard Mater. 2021; 424(Pt C):127565.
DOI: 10.1016/j.jhazmat.2021.127565.
View
17.
Cetin D, Yavuz O, Alcay Y, Yildirim M, Kaplan M, Aribuga H
. Development of a new near-infrared, spectrophotometric, and colorimetric probe based on phthalocyanine containing mercaptoquinoline unit for discriminative and highly sensitive detection of Ag, Cu, and Hg ions. Spectrochim Acta A Mol Biomol Spectrosc. 2023; 297:122725.
DOI: 10.1016/j.saa.2023.122725.
View
18.
Fang Y, Zhang Y, Cao L, Yang J, Hu M, Pang Z
. Portable Hg Nanosensor with ppt Level Sensitivity Using Nanozyme as the Recognition Unit, Enrichment Carrier, and Signal Amplifier. ACS Appl Mater Interfaces. 2020; 12(10):11761-11768.
DOI: 10.1021/acsami.0c00210.
View
19.
Addis D, Aggarwal S, Lazrak A, Jilling T, Matalon S
. Halogen-Induced Chemical Injury to the Mammalian Cardiopulmonary Systems. Physiology (Bethesda). 2021; 36(5):272-291.
PMC: 8807065.
DOI: 10.1152/physiol.00004.2021.
View
20.
Chen D, Shao S, Zhang W, Zhao J, Lian M
. Nitrogen and sulfur co-doping strategy to trigger the peroxidase-like and electrochemical activity of TiC nanosheets for sensitive uric acid detection. Anal Chim Acta. 2022; 1197:339520.
DOI: 10.1016/j.aca.2022.339520.
View