6.
Bijelic A, Aureliano M, Rompel A
. The antibacterial activity of polyoxometalates: structures, antibiotic effects and future perspectives. Chem Commun (Camb). 2018; 54(10):1153-1169.
PMC: 5804480.
DOI: 10.1039/c7cc07549a.
View
7.
Yudaev P, Mezhuev Y, Chistyakov E
. Nanoparticle-Containing Wound Dressing: Antimicrobial and Healing Effects. Gels. 2022; 8(6).
PMC: 9222824.
DOI: 10.3390/gels8060329.
View
8.
Lim J, Yoon J, Hovde C
. A brief overview of Escherichia coli O157:H7 and its plasmid O157. J Microbiol Biotechnol. 2010; 20(1):5-14.
PMC: 3645889.
View
9.
Luong T, Absillis G, Shestakova P, Parac-Vogt T
. Hydrolysis of the RNA model substrate catalyzed by a binuclear Zr(IV)-substituted Keggin polyoxometalate. Dalton Trans. 2015; 44(35):15690-6.
DOI: 10.1039/c5dt02077h.
View
10.
Yudaev P, Chuev V, Klyukin B, Kuskov A, Mezhuev Y, Chistyakov E
. Polymeric Dental Nanomaterials: Antimicrobial Action. Polymers (Basel). 2022; 14(5).
PMC: 8912874.
DOI: 10.3390/polym14050864.
View
11.
Luong T, Shestakova P, Parac-Vogt T
. Kinetic studies of phosphoester hydrolysis promoted by a dimeric tetrazirconium(iv) Wells-Dawson polyoxometalate. Dalton Trans. 2016; 45(30):12174-80.
DOI: 10.1039/c6dt02211a.
View
12.
Kim H, Lee D
. Nitric oxide-inducing Genistein elicits apoptosis-like death via an intense SOS response in Escherichia coli. Appl Microbiol Biotechnol. 2020; 104(24):10711-10724.
DOI: 10.1007/s00253-020-11003-1.
View
13.
Vanhaecht S, Absillis G, Parac-Vogt T
. Hydrolysis of DNA model substrates catalyzed by metal-substituted Wells-Dawson polyoxometalates. Dalton Trans. 2012; 41(33):10028-34.
DOI: 10.1039/c2dt30588g.
View
14.
Hu J, Tan S, Lim M, Chang S, Cui G, Liu S
. Identification of a Wells-Dawson polyoxometalate-based AP-2γ inhibitor with pro-apoptotic activity. Biochem J. 2018; 475(11):1965-1977.
DOI: 10.1042/BCJ20170942.
View
15.
Inoue M, Suzuki T, Fujita Y, Oda M, Matsumoto N, Yamase T
. Enhancement of antibacterial activity of beta-lactam antibiotics by [P2W18O62]6-, [SiMo12O40]4-, and [PTi2W10O40]7- against methicillin-resistant and vancomycin-resistant Staphylococcus aureus. J Inorg Biochem. 2006; 100(7):1225-33.
DOI: 10.1016/j.jinorgbio.2006.02.004.
View
16.
Casaregola S, Dari R, Huisman O
. Quantitative evaluation of recA gene expression in Escherichia coli. Mol Gen Genet. 1982; 185(3):430-9.
DOI: 10.1007/BF00334135.
View
17.
Erental A, Kalderon Z, Saada A, Smith Y, Engelberg-Kulka H
. Apoptosis-like death, an extreme SOS response in Escherichia coli. mBio. 2014; 5(4):e01426-14.
PMC: 4161249.
DOI: 10.1128/mBio.01426-14.
View
18.
Grinholc M, Rodziewicz A, Forys K, Rapacka-Zdonczyk A, Kawiak A, Domachowska A
. Fine-tuning recA expression in Staphylococcus aureus for antimicrobial photoinactivation: importance of photo-induced DNA damage in the photoinactivation mechanism. Appl Microbiol Biotechnol. 2015; 99(21):9161-76.
PMC: 4619464.
DOI: 10.1007/s00253-015-6863-z.
View
19.
Gumerova N, Al-Sayed E, Krivosudsky L, cipcic-Paljetak H, Verbanac D, Rompel A
. Antibacterial Activity of Polyoxometalates Against . Front Chem. 2018; 6:336.
PMC: 6102686.
DOI: 10.3389/fchem.2018.00336.
View
20.
Dwyer D, Camacho D, Kohanski M, Callura J, Collins J
. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol Cell. 2012; 46(5):561-72.
PMC: 3710583.
DOI: 10.1016/j.molcel.2012.04.027.
View