6.
Zeng M, Xu M, Li X, Li J, Liu Y
. PAD4 silencing inhibits inflammation whilst promoting trophoblast cell invasion and migration by inactivating the NEMO/NF-κB pathway. Exp Ther Med. 2022; 24(3):568.
PMC: 9366263.
DOI: 10.3892/etm.2022.11505.
View
7.
Caamano J, Perez P, Lira S, Bravo R
. Constitutive expression of Bc1-3 in thymocytes increases the DNA binding of NF-kappaB1 (p50) homodimers in vivo. Mol Cell Biol. 1996; 16(4):1342-8.
PMC: 231118.
DOI: 10.1128/MCB.16.4.1342.
View
8.
McKenna S, Wright C
. Inhibiting IκBβ-NFκB signaling attenuates the expression of select pro-inflammatory genes. J Cell Sci. 2015; 128(11):2143-55.
PMC: 4457027.
DOI: 10.1242/jcs.168351.
View
9.
Kearns J, Basak S, Werner S, Huang C, Hoffmann A
. IkappaBepsilon provides negative feedback to control NF-kappaB oscillations, signaling dynamics, and inflammatory gene expression. J Cell Biol. 2006; 173(5):659-64.
PMC: 2063883.
DOI: 10.1083/jcb.200510155.
View
10.
Fang S, Cai C, Bai Y, Zhang L, Yang L
. Early Pregnancy Regulates Expression of IkappaB Family in Ovine Spleen and Lymph Nodes. Int J Mol Sci. 2023; 24(6).
PMC: 10049502.
DOI: 10.3390/ijms24065156.
View
11.
Miller J
. The function of the thymus and its impact on modern medicine. Science. 2020; 369(6503).
DOI: 10.1126/science.aba2429.
View
12.
Simeonidis S, Liang S, Chen G, Thanos D
. Cloning and functional characterization of mouse IkappaBepsilon. Proc Natl Acad Sci U S A. 1998; 94(26):14372-7.
PMC: 24982.
DOI: 10.1073/pnas.94.26.14372.
View
13.
Guo D, Tong Y, Jiang X, Meng Y, Jiang H, Du L
. Aerobic glycolysis promotes tumor immune evasion by hexokinase2-mediated phosphorylation of IκBα. Cell Metab. 2022; 34(9):1312-1324.e6.
DOI: 10.1016/j.cmet.2022.08.002.
View
14.
Cook S, Hung V, Duncan K
. Crosstalk between Estrogen Withdrawal and NFκB Signaling following Penetrating Brain Injury. Neuroimmunomodulation. 2018; 25(4):193-200.
DOI: 10.1159/000493506.
View
15.
Della-Valle V, Roos-Weil D, Scourzic L, Mouly E, Aid Z, Darwiche W
. Nfkbie-deficiency leads to increased susceptibility to develop B-cell lymphoproliferative disorders in aged mice. Blood Cancer J. 2020; 10(3):38.
PMC: 7070037.
DOI: 10.1038/s41408-020-0305-6.
View
16.
Paxian S, Merkle H, Riemann M, Wilda M, Adler G, Hameister H
. Abnormal organogenesis of Peyer's patches in mice deficient for NF-kappaB1, NF-kappaB2, and Bcl-3. Gastroenterology. 2002; 122(7):1853-68.
DOI: 10.1053/gast.2002.33651.
View
17.
Yang L, Cai C, Fang S, Hao S, Zhang T, Zhang L
. Changes in expression of nuclear factor kappa B subunits in the ovine thymus during early pregnancy. Sci Rep. 2022; 12(1):17683.
PMC: 9587240.
DOI: 10.1038/s41598-022-21632-3.
View
18.
Mooster J, Le Bras S, Massaad M, Jabara H, Yoon J, Galand C
. Defective lymphoid organogenesis underlies the immune deficiency caused by a heterozygous S32I mutation in IκBα. J Exp Med. 2015; 212(2):185-202.
PMC: 4322042.
DOI: 10.1084/jem.20140979.
View
19.
Moffett A, Shreeve N
. Local immune recognition of trophoblast in early human pregnancy: controversies and questions. Nat Rev Immunol. 2022; 23(4):222-235.
PMC: 9527719.
DOI: 10.1038/s41577-022-00777-2.
View
20.
Onitsuka M, Kinoshita Y, Nishizawa A, Tsutsui T, Omasa T
. Enhanced IgG1 production by overexpression of nuclear factor kappa B inhibitor zeta (NFKBIZ) in Chinese hamster ovary cells. Cytotechnology. 2017; 70(2):675-685.
PMC: 5851962.
DOI: 10.1007/s10616-017-0170-8.
View