6.
Liu L, Song J, Zhang M, Jiang W
. Aggregation and Deposition Kinetics of Polystyrene Microplastics and Nanoplastics in Aquatic Environment. Bull Environ Contam Toxicol. 2021; 107(4):741-747.
DOI: 10.1007/s00128-021-03239-y.
View
7.
Pramanik B, Pramanik S, Monira S
. Understanding the fragmentation of microplastics into nano-plastics and removal of nano/microplastics from wastewater using membrane, air flotation and nano-ferrofluid processes. Chemosphere. 2021; 282:131053.
DOI: 10.1016/j.chemosphere.2021.131053.
View
8.
Zangmeister C, Radney J, Benkstein K, Kalanyan B
. Common Single-Use Consumer Plastic Products Release Trillions of Sub-100 nm Nanoparticles per Liter into Water during Normal Use. Environ Sci Technol. 2022; 56(9):5448-5455.
DOI: 10.1021/acs.est.1c06768.
View
9.
Wang X, Bolan N, Tsang D, Sarkar B, Bradney L, Li Y
. A review of microplastics aggregation in aquatic environment: Influence factors, analytical methods, and environmental implications. J Hazard Mater. 2020; 402:123496.
DOI: 10.1016/j.jhazmat.2020.123496.
View
10.
Lin P, Wu I, Tsai C, Kirankumar R, Hsieh S
. Detecting the release of plastic particles in packaged drinking water under simulated light irradiation using surface-enhanced Raman spectroscopy. Anal Chim Acta. 2022; 1198:339516.
DOI: 10.1016/j.aca.2022.339516.
View
11.
Julienne F, Delorme N, Lagarde F
. From macroplastics to microplastics: Role of water in the fragmentation of polyethylene. Chemosphere. 2019; 236:124409.
DOI: 10.1016/j.chemosphere.2019.124409.
View
12.
Chen H, Xu L, Yu K, Wei F, Zhang M
. Release of microplastics from disposable cups in daily use. Sci Total Environ. 2022; 854:158606.
DOI: 10.1016/j.scitotenv.2022.158606.
View
13.
Toussaint B, Raffael B, Angers-Loustau A, Gilliland D, Kestens V, Petrillo M
. Review of micro- and nanoplastic contamination in the food chain. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2019; 36(5):639-673.
DOI: 10.1080/19440049.2019.1583381.
View
14.
Wang Z, Dou M, Ren P, Sun B, Jia R, Zhou Y
. Settling velocity of irregularly shaped microplastics under steady and dynamic flow conditions. Environ Sci Pollut Res Int. 2021; 28(44):62116-62132.
DOI: 10.1007/s11356-021-14654-3.
View
15.
Bradney L, Wijesekara H, Palansooriya K, Obadamudalige N, Bolan N, Ok Y
. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environ Int. 2019; 131:104937.
DOI: 10.1016/j.envint.2019.104937.
View
16.
Hernandez L, Xu E, Larsson H, Tahara R, Maisuria V, Tufenkji N
. Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ Sci Technol. 2019; 53(21):12300-12310.
DOI: 10.1021/acs.est.9b02540.
View
17.
Goral K, Guler H, Larsen B, Carstensen S, Christensen E, Kerpen N
. Settling velocity of microplastic particles having regular and irregular shapes. Environ Res. 2023; 228:115783.
DOI: 10.1016/j.envres.2023.115783.
View
18.
Li D, Shi Y, Yang L, Xiao L, Kehoe D, Gunko Y
. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nat Food. 2023; 1(11):746-754.
DOI: 10.1038/s43016-020-00171-y.
View
19.
Huang D, Tao J, Cheng M, Deng R, Chen S, Yin L
. Microplastics and nanoplastics in the environment: Macroscopic transport and effects on creatures. J Hazard Mater. 2020; 407:124399.
DOI: 10.1016/j.jhazmat.2020.124399.
View
20.
Zhou X, Wang J, Ren J
. Analysis of Microplastics in Takeaway Food Containers in China Using FPA-FTIR Whole Filter Analysis. Molecules. 2022; 27(9).
PMC: 9103929.
DOI: 10.3390/molecules27092646.
View