6.
Chen H, Tian J, He W, Guo Z
. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J Am Chem Soc. 2015; 137(4):1539-47.
DOI: 10.1021/ja511420n.
View
7.
Cao J, Chi J, Xia J, Zhang Y, Han S, Sun Y
. Iodinated Cyanine Dyes for Fast Near-Infrared-Guided Deep Tissue Synergistic Phototherapy. ACS Appl Mater Interfaces. 2019; 11(29):25720-25729.
DOI: 10.1021/acsami.9b07694.
View
8.
Liu J, Yuan Y, Cheng Y, Fu D, Chen Z, Wang Y
. Copper-Based Metal-Organic Framework Overcomes Cancer Chemoresistance through Systemically Disrupting Dynamically Balanced Cellular Redox Homeostasis. J Am Chem Soc. 2022; 144(11):4799-4809.
DOI: 10.1021/jacs.1c11856.
View
9.
Chen M, Liu D, Liu F, Wu Y, Peng X, Song F
. Recent advances of redox-responsive nanoplatforms for tumor theranostics. J Control Release. 2021; 332:269-284.
DOI: 10.1016/j.jconrel.2021.02.030.
View
10.
Atchison J, Kamila S, Nesbitt H, Logan K, Nicholas D, Fowley C
. Iodinated cyanine dyes: a new class of sensitisers for use in NIR activated photodynamic therapy (PDT). Chem Commun (Camb). 2017; 53(12):2009-2012.
DOI: 10.1039/c6cc09624g.
View
11.
Su Z, Xi D, Chen Y, Wang R, Zeng X, Xiong T
. Carrier-Free ATP-Activated Nanoparticles for Combined Photodynamic Therapy and Chemotherapy under Near-Infrared Light. Small. 2023; 19(11):e2205825.
DOI: 10.1002/smll.202205825.
View
12.
Zhang Y, Li X, Huang L, Kim H, An J, Lan M
. AIE based GSH activatable photosensitizer for imaging-guided photodynamic therapy. Chem Commun (Camb). 2020; 56(71):10317-10320.
DOI: 10.1039/d0cc02045a.
View
13.
Niu B, Liao K, Zhou Y, Wen T, Quan G, Pan X
. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials. 2021; 277:121110.
DOI: 10.1016/j.biomaterials.2021.121110.
View
14.
Dolmans D, Fukumura D, Jain R
. Photodynamic therapy for cancer. Nat Rev Cancer. 2003; 3(5):380-7.
DOI: 10.1038/nrc1071.
View
15.
Chun K, Kim D, Surh Y
. Role of Reductive versus Oxidative Stress in Tumor Progression and Anticancer Drug Resistance. Cells. 2021; 10(4).
PMC: 8065762.
DOI: 10.3390/cells10040758.
View
16.
Saikolappan S, Kumar B, Shishodia G, Koul S, Koul H
. Reactive oxygen species and cancer: A complex interaction. Cancer Lett. 2019; 452:132-143.
DOI: 10.1016/j.canlet.2019.03.020.
View
17.
Gu Y, Lai H, Chen Z, Zhu Y, Sun Z, Lai X
. Chlorination-Mediated π-π Stacking Enhances the Photodynamic Properties of a NIR-II Emitting Photosensitizer with Extended Conjugation. Angew Chem Int Ed Engl. 2023; 62(25):e202303476.
DOI: 10.1002/anie.202303476.
View
18.
Fan W, Huang P, Chen X
. Overcoming the Achilles' heel of photodynamic therapy. Chem Soc Rev. 2016; 45(23):6488-6519.
DOI: 10.1039/c6cs00616g.
View
19.
Li M, Xia J, Tian R, Wang J, Fan J, Du J
. Near-Infrared Light-Initiated Molecular Superoxide Radical Generator: Rejuvenating Photodynamic Therapy against Hypoxic Tumors. J Am Chem Soc. 2018; 140(44):14851-14859.
DOI: 10.1021/jacs.8b08658.
View
20.
Trachootham D, Alexandre J, Huang P
. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?. Nat Rev Drug Discov. 2009; 8(7):579-91.
DOI: 10.1038/nrd2803.
View